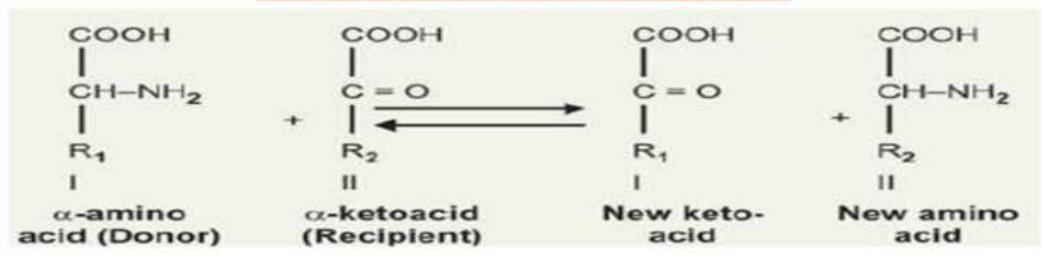
UREA CYCLE

Presented by: Dr. Sapna Kumari ZOO CC- 410 SEMESTER- IV UNIT- 4


Introduction

- Urea is water soluble compound that could be excreted in urine.
- Urea is the end-product of amino acid metabolism
- Urea is used to get rid of the increased amount of ammonia (NH3) that produces by many processes in human body ...

Formation of NH3 and urea can be discussed under the following heads:

- Transamination
- Deamination
 - Oxidative deamination
 - Non-oxidative deamination
- Transdeamination
- NH3 transport
- Formation of urea

Transamination

- Donor amino acid (I) thus becomes a new ketoacid (I) after losing the α-NH2 group, and the recipient ketoacid (II) becomes a new amino acid (II) after receiving the NH2 group.
- The process represents only an intermolecular transfer of NH2 group without the splitting out of NH3. Ammonia formation does not take place by transamination reaction.

Transamination

- While most amino acids may act as Donor I, the recipient ketoacids may be either- α-keto-(oxo) glutarate, or oxaloacetate or pyruvate.
- It is to be noted that all of these recipient ketoacids are "components of TCA cycle" and hence they are common metabolites of the cell and are easily available.
- The amino acids formed from these recipient ketoacids are respectively glutamic acid, aspartic acid and alanine.

Deamination

- Deamination is the process by which N- of amino acid is removed as NH3.
- It can be of 2 types:
 - A. Oxidative deamination
 - B. Non-oxidative deamination.
- Oxidative deamination is done by amino acid dehydrogenase enzymes (oxidase enzymes)

Transdeamination

- Specific for Deamination of L-Glutamic Acid.
- This is done by a specific enzyme called L-glutamate dehydrogenase.
- This enzyme is widely distributed in tissues in humans and has high activity, and is specific for L-Glutamate. It requires NAD+ or NADP+ as coenzymes
- It is a regulated enzyme whose activity is affected by allosteric modifiers as ATP, GTP and NADH which inhibit the enzyme, and ADP activates the enzyme

Transdeamination

- The enzyme L-Glutamate dehydrogenase catalyzes the deamination of L-Glutamate to form NH3 and α-Ketoglutarate.
- It is to be noted that the reaction is reversible, and the equilibrium constant favours glutamate formation, but the quick removal of NH3 to form urea in urea cycle and α-Ketoglutarate to TCA cycle favours onward reaction, i.e. NH3 formation
- This mechanism seems to be the major pathway for removal of NH2 group from an L-amino acid and formation of NH3.

Sources of NH3

- Three main sources !!
- 1- transamination, deamination & trandeamination (previously discussed)
- 2- Absorption from gut produced by intestinal bacteria.
- 3- Pyrimidine catabolism. (nitrogenous base of nucleic acids)

Why NH3 is Toxic?

- Only for 3 main reasons ...
- depletion in intermediates of TCA cycle
 (depletion of energy) since a-keto-acids
 are major intermediates ... (
 transamination) ← discussed
- 2. Reduction in synthesis of GABA (an inhibitory brain neurotransmitter) because the reduction of glutamate since it will converted to glutamin. Gamma- Aminobutyric Acid
- Co-transport in different directions in BBB, glutamine to out and tryptophan to in, tryptophan have a toxic effect on brain tissues.

How brain get rid of excess NH3 ?!!

 No urea cycle occurring in brain tissue, so brain have a mechanism to communicate with urea cycle in liver ... HOW ?!!

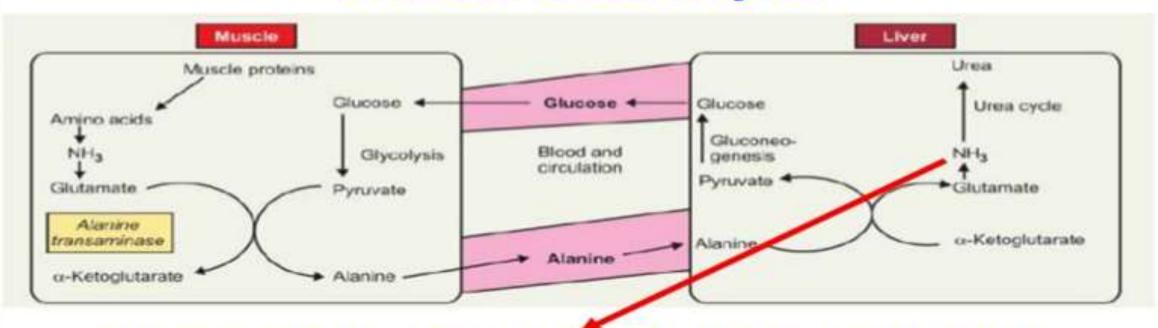
Brain → glutamate + NH3 → glutamine

- This reaction is done by glutamine synthetase enzyme.
- Glutamine is soluble in blood and can be transported to liver or Kidney ..
- Other enzyme called glutaminase is found in these organs (liver and kidney)
- In kidney

Glutamine → NH3 + glutamate

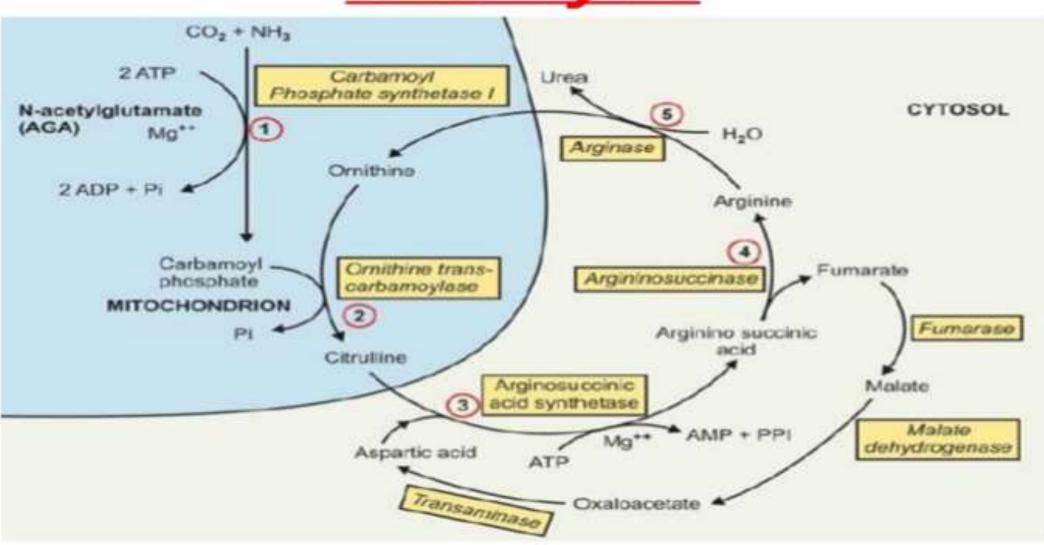
 NH3 will dissolve in water and excreted in urine as amonioum ions ..

How brain get rid of excess NH3 ?!!


In liver

Glutamine → glutamate + NH3

- NH3 will enter urea cycle and to lastly converted to urea ..
- Glutamate will converted to aspartate, another substrate for urea cycle (source of the 2nd NH3 of urea)


How muscle get rid of excess NH3?!

Glucose-alanine cycle

As aspartate since aspartate is a substrate for urea cycle.

Urea cycle

INTRODUCTION:

- Urea cycle is the first metabolic cycle to be elucidated.
- The cycle is known as Krebs-Henseleit Urea cycle.
- Ornithine is the first member of the reaction, it is also called as Ornithine cycle.
- Urea is the major end product of protein metabolism (amino acid metabolism) in humans and mammals.
- ❖Urea has two amino (-NH₂) groups, one derived from NH₃ and the other from aspartate.
- Urea is synthesized in the liver.
- Than secreted into blood stream.
- And taken up by the kidneys for excretion in the urine.
- Urea synthesis is a five step cyclic process, with five distinct enzymes.
- The first two enzymes are present in mitochondria while the rest are localized in cytosol.

CHARACTERISTICS:

- Urea is the major disposal form of amino groups.
- ❖It accounts for 90% of the nitrogen containing components of urine.
- The urea cycle is the sole source of endogenous production of arginine.
- Urea formation takes place in liver.
- Urea excretion occurs through kidney.

Steps in the urea cycle are

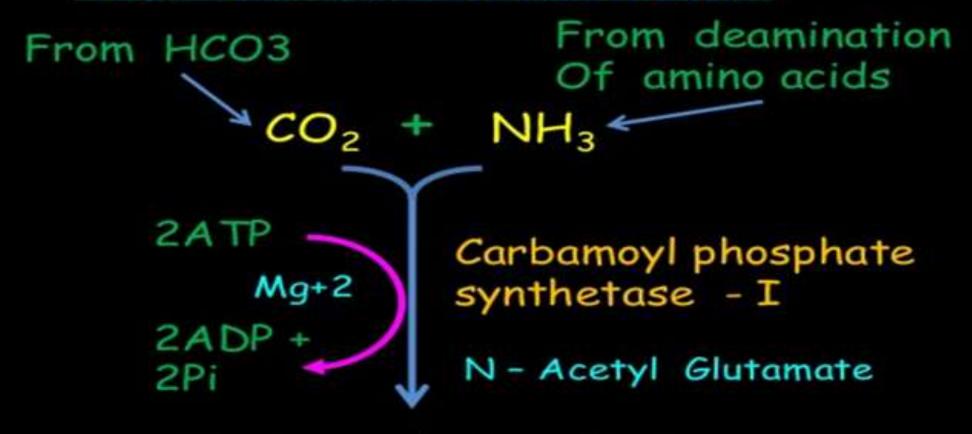
Step 1: Formation of carbamoyl

phosphate

Step 2: Formation of citrulline

Mitochondria

Step 3: Synthesis of Argininosuccinate


Step 4: Synthesis of Arginine

Step 5: Release of urea and Ornithine

Cytosol

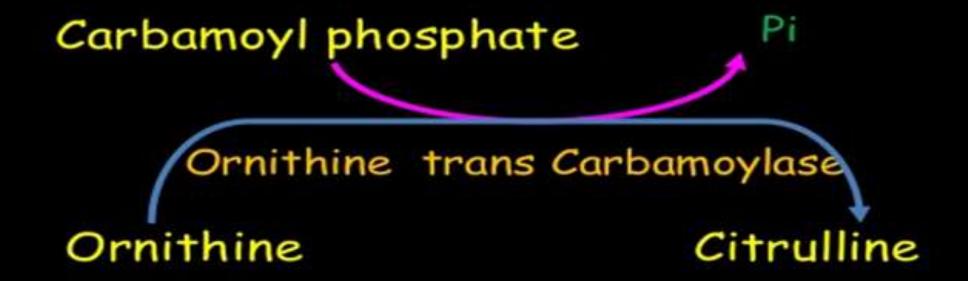
Step 1: Synthesis of carbamoyl phosphate

Step 1: Takes place in mitochondria

Carbamoyl phosphate

In liver mitochondria

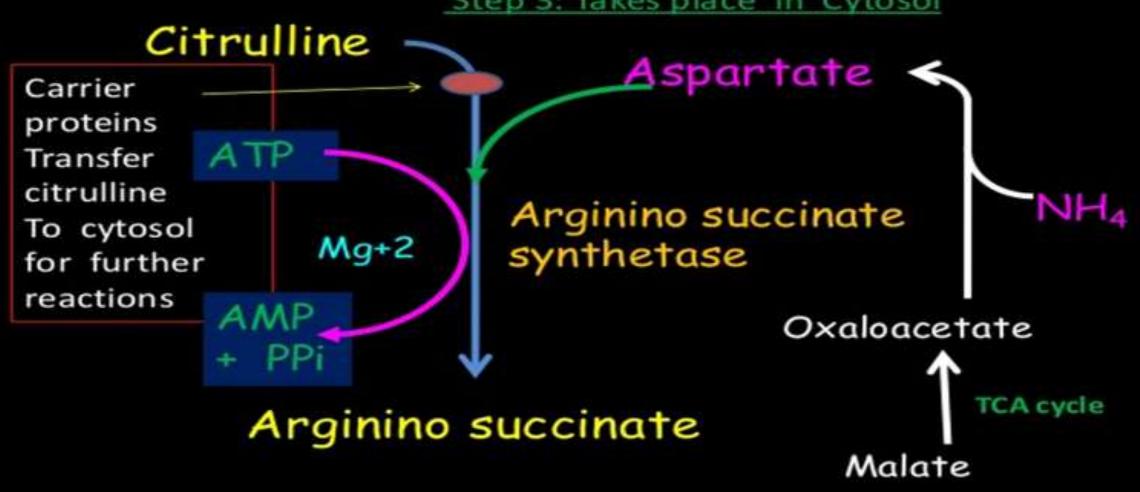
NAG allosterically activates CPS-I


 Two high energy phosphate bonds are utilized for the synthesis of carbamoyl Phosphate

Isomers of carbamoyl phosphate synthetase

Carbamoyl Phosphate Synthetase I	Carbamoyl Phosphate Synthetase II
 Found in mitochondria NH₃ is the substrate 	Cytosol Amide of glutamine
Urea synthesis A. N-acetyl glutamate is a positive effector	Pyrimidine synthesis N-acetyl glutamate has no effect

Step 2: Synthesis of Citrulline


Step 2 : Takes place in mitochondria

Carrier proteins transfer Ornithine from cytosol to mitochondria matrix

Step 3: Synthesis of Arginino succinate

Step 3: Takes place in Cytosol

Step 4: Synthesis of Arginine

Step 4: Takes place in Cytosol

Arginino succinate

Arginino succinase

Fumarate

Arginine

Malate

Arginine - Essential amino acid synthesized in adult

- Arginino succinate is cleaved to arginine and fumarate
- Enzyme is present in cytoplasm of liver and kidney tissues
- Link between Urea cycle and TCA cycle
- Fumarate can be converted to malate and then to oxaloacetate by the intervention of certain TCA cycle enzyme
- Aspartate may be regenerated by transamination

Step 5: Release of Ornithine and Urea

Step 5: Takes place in Cytosol

Arginine

Arginase

Present only in liver

Urea

Ornithine

- Release of urea and ornithine
 - The guanido group of arginine Hydrolytically cleaved by arginase
 - The urea diffuses into blood from where it is cleared by the kidneys
 - Ornithine will enter mitochondria and become substrate for reaction 2

SYNTHESIS:

■STEP I: - Formation of carbamoyl phosphate

■STEP II: - Formation of citrulline

Ornithine Transcarbamoylase
Ornithine + Carbamoyl Phosphate Citrulline + Pi

Arginosuccinate synthase

☐STEP III: - Formation of Arginosuccinate

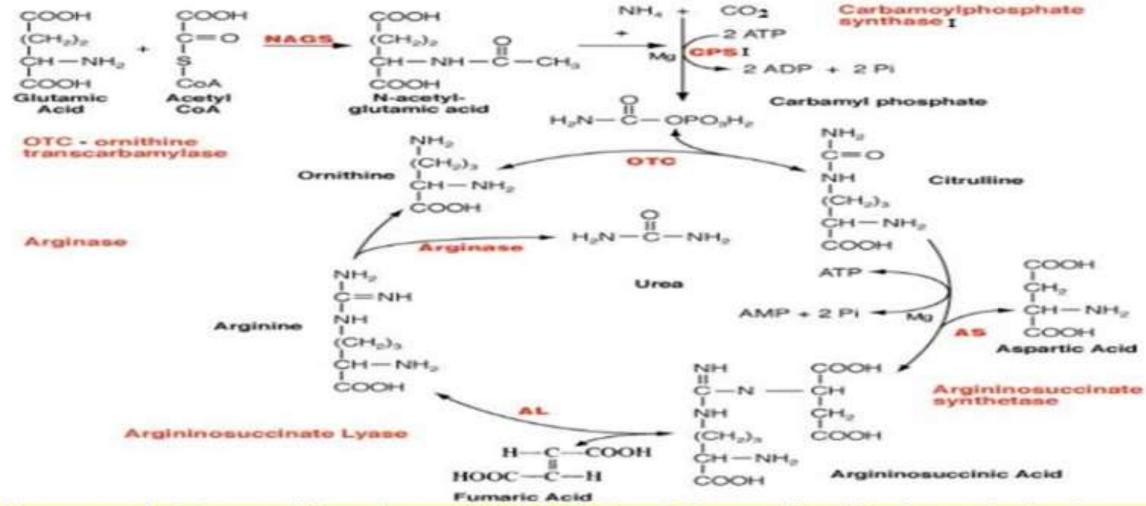
Citrulline + Aspartate + ATPI

Arginosuccinate + AMP + PPi

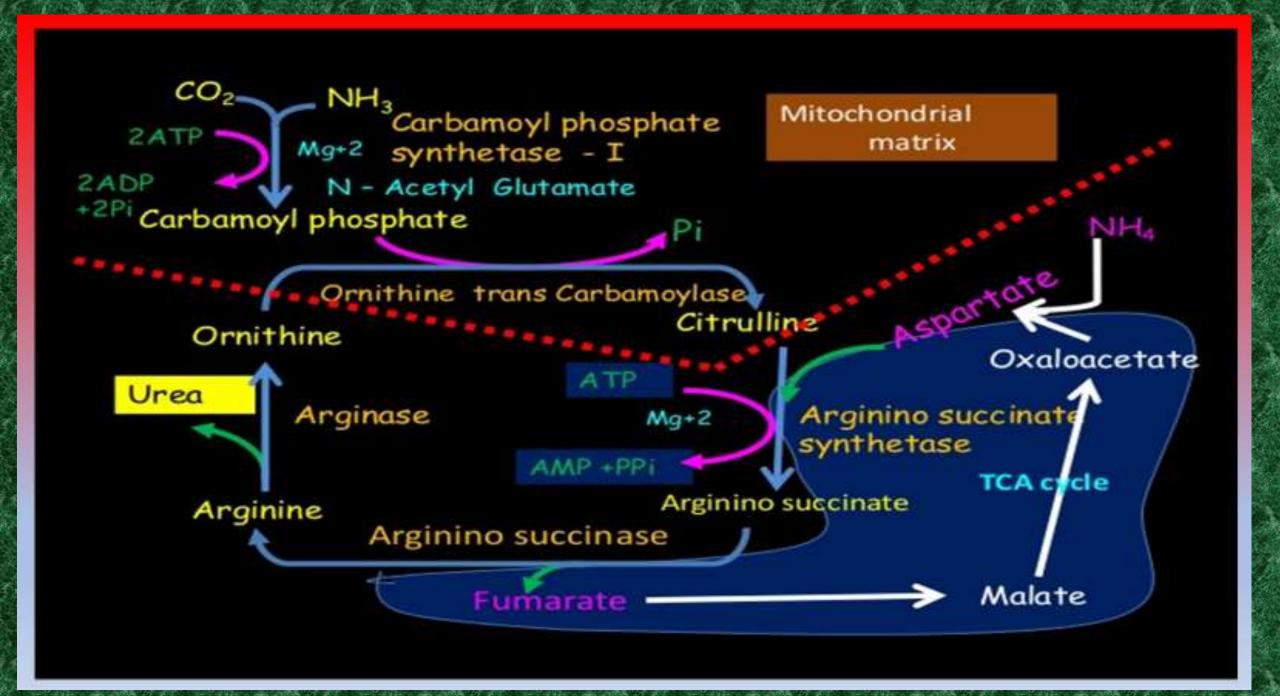
☐STEP IV: - Formation of Arginine

Arginosuccinase

Arginosuccinate Arginine + Fumarate


☐STEP V: - Formation of Urea

Arginine + H₂O Urea + Ornithine


This Ornithine again bind with Carbamoyl Phosphate to form Citrulline. That's why it is a cyclic process.

Overall reaction and energetic:

N-Acetylglutamate synthetase

The urea cycle is irreversible and consumes 4 ATP. Two ATP are utilized for the synthesis of carbamoyl phosphate. One ATP is converted to AMP and PPi to produce arginosuccinate which equals to 2 ATP. Hence 4 ATP are actually consumed.

Blood urea

- Normal level- 15 45 mg/dl
- Uremia or azotemia is increased blood urea level due to renal failure
- Normally urea excretion is about 20-30 gm per day
- A high value of blood urea indicates significant reduction in the GFR and kidney disease
- Causes for reduction in GFR--- Pre renal, Renal and Post-renal
- Blood Urea estimation is the screening test for the evaluation of Kidney (renal) function.

Blood Urea Significance (continued): -

Pre-renal:

- > This is associated with increased protein breakdown, leading to a negative nitrogen balance.
- Observed after major surgery, prolonged fever, diabetic coma, thyrotoxicosis etc.
- In leukemia & bleeding disorders also, blood Urea is elevated.

Renal:

In renal disorders like acute glomerulonephritis, chronic nephritis, nephrosclerosis, polycystic kidey, blood Urea is increased.

Post-renal:

- Due to obstruction in the Urinary tract (e.g. tumors, stones, enlargement of prostate gland etc.) blood Urea is elevated.
- This is due to increased reabsorption of Urea from the tubules.

Common symptoms of urea cycle disorders includes

- Elevated blood NH₃ level
- Aversion to protein intake
- Tendency for vomiting
- Mental retardation
- Coma, convulsions and death
- Lowering the dietary protein intake has been suggested as a way of treatment

