B.SC-4TH SEM UNIT-2 (CC-410)

GLUCOGENOLYSIS

BY

DR. AMRESH KUMAR DEPT. OF ZOOLOGY, PWC, PATNA-01

Glycogenolysis

- The degradation of stored glycogen in liver & muscle constitutes glycogenolysis
- The synthesis & degradation of glycogen are not reversible.
- An independent set of enzymes present in the cytosol carry out glycogenolysis
- Glycogen is degraded by breaking α-l,4 & α-1,6-Glycosidic bonds.

Action of glycogen phosphorylase

- The a-1,4-glycosidic bonds (from the nonreducing ends) are cleaved sequentially by the enzyme glycogen phosphorylase to yield glucose 1-phosphate.
- This process-called phosphorolysis- continues until four glucose residues remain on either side of branching point (a-1,6 -glycosidic link).

- The glycogen so formed is known as limit dextrin which cannot be further degraded by phosphorylase.
- It is bound with one molecule of PLP.

Action of debranching enzyme

- The branches of glycogen are cleaved by two enzyme activities present on a single polypeptide called debranching enzyme,
- It is a bifunctional enzyme.
- Glycosyl 4: 4 transferase (oligo α-,1,4 1,4→
 glucantransferase) activity removes a fragment of 3
 or 4 glucose residues attached at a branch &
 transfers them to another chain.

- One α -1,4 bond is cleaved & the same α -1,4 bond is made, places are different.
- Amylo α-1,6-Glucosidase breaks the α-1,6 bond at the branch with a single glucose residue & releases a free glucose.
- The remaining molecule of glycogen is again available for the action of phosphorylase & debranching enzyme to repeat the reactions.

Formation of glucose 6-phosphate & glucose

- Through the combined action of glycogen
 phosphorylase & debranching enzyme, glucose 1 phosphate & free glucose in a ratio of 8: 1 are produced.
- Glucose 1- phosphate is converted to glucose 6 –
 phosphate by phosphoglucomutase.
- The fate of glucose 6-phosphate depends on the tissue.

Glucose-6-phosphatase in Liver

- Hepatic glucose-6-phosphatase hydrolyses glucose-6-phosphate to glucose.
- The free glucose is released to blood stream.

Muscle Lacks Glucose-6-phosphatase

- Muscle will not release glucose to the blood stream, because muscle tissue does not contain glucose-6-phosphatase.
- Provides ATP for muscle contraction via glycolysis.

- The liver, kidney & intestine contain the enzyme glucose 6-phosphatase that cleaves glucose 6 -phosphate to glucose.
- This enzyme is absent in muscle & brain, hence free glucose cannot be produced from glucose 6phosphate in these tissues.

- Liver is the major glycogen storage organ to provide glucose into the circulation to be utilized by various tissues.
- In the peripheral tissues, glucose 6 –
 phosphate produced by glycogenolysis will be
 used for glycolysis.

Degradation by lysosomal acid maltase

- Acid maltase or α-1,4-glucosidase degrades small quantity of glycogen.
- Deficiency of this α-1,4-glucosidase results in glycogen accumulation, causing glycogen storage disease type II (Pompe's disease)

Regulation of glycogenesis & glycogenolysis

- Glycogenesis and glycogenolysis are,
 controlled by the enzymes glycogen synthase
 & glycogen phosphorylase.
- Three mechanisms
- Allosteric regulation
- Hormonal regulation
- Influence of calcium

Allosteric regulation of glycogen metabolism

- Certain metabolites that allosterically regulate the activities of glycogen synthase & glycogen phosphorylase.
- The glycogen synthesis is increased when substrate availability and energy levels are high.

- Glycogen breakdown is enhanced when glucose concentration & energy levels are low.
- In a well-fed state, the availability of glucose 6 phosphate is high which allosterically activates glycogen synthase for more glycogen synthesis.

- Glucose 6-phosphate & ATP allosterically inhibit glycogen phosphorylase.
- Free glucose in liver also acts as an allosteric inhibitor of glycagen phosphorylase.

Hormonal regulation of glycogen metabolism

 The hormones, through a complex series of reactions, bring about covalent modification, namely phosphorylation and dephosphorylation of enzyme proteins which, ultimately control Glycogen synthesis or its degradation.

- The hormones like epinephrine, norepinephrine and glucagon (in liver) activate adenylate cyclase to increase the production of cAMP.
- The enzyme phosphodiesterase breaks down cAMP.
- The hormone insulin increases the phosphodiesterase activity in liver & lowers the cAMP levels.

Regulation of glycogenesis by cAMP

- Regulated by glycogen synthase.
- It exist in two forms glycogen synthase a -not phosphorylated & most active.
- Glycogen synthase b phosphorylated inactive form.
- Glycogen synthase a can be converted to 'b' form (inactive) by phsophorylation.

- Phosphorylation is catalysed by a cAMP dependent protein kinase.
- Protein kinase phosphorylates & inactivates glycogen synthase by converting 'a' form to 'b' form.
- The glycogen synthase 'b' can be converted back to synthase' a' by protein phosphatase l.

• The inhibition of glycogen synthesis brought by epinephrine (also norepinephrine) & glucagon through cAMP by converting active glycogen synthase 'a' to inactive synthase 'b'.

Regulation of glycogen synthesis by cAMP

Regulation of glycogenolysis by cAMP

- The hormones like epinephrine & glucagon bring about glycogenolysis by their action on glycogen phosphorylase through cAMP.
- Glycogen phosphorylase exists in two forms
- An active 'a' form phosphorylated
- Inactive form 'b' dephosphorylated

- The cAMP activates cAMP dependent protein kinase.
- Protein kinase phosphorylates inactive form of glycogen phsophorylase kinase to active form.
- The enzyme protein phosphatase removes phosphate & inactivates phosphorylase kinase.

- The Phosphorylase kinase phosphorylates inactive glycogen phosphorylase 'b' to active glycogen phosphorylase 'a' which degrades glycogen.
- The enzyme protein phosphatase I can dephosphorylate & convert active glycogen phosphorylase 'a' to inactive 'b' form.

Effect of Ca²⁺ ions on glycogenolysis

- When the muscle contracts, Ca²⁺ ions are released from the sarcoplasmic reticulum.
- Ca²⁺ binds to calmodulin- calcium modulating protein & directly activates phosphorylase kinase without the involvement of cAMP-dependent protein kinase.
- An elevated glucagon or epinephrine level increases glycogen degradation whereas an elevated insulin results in increased glycogen synthesis.