ACID BASE BALANCE
BY

Dr. Amresh Kumar

Dept. of Zoology, Patna University, Patna amresh27@gmail.com

Renal Control of Acid-Base Balance

Renal Control of Acid-Base Balance

- The kidneys control acid-base balance by excreting either acidic or basic urine
- Excreting acidic urine reduces the amount of acid in extracellular fluid
- Excreting basic urine removes base from the extracellular fluid

- The kidneys regulate extracellular fluid H⁺ concentration through three fundamental mechanisms:
- (1) secretion of H⁺
- (2) reabsorption of filtered HCO3
- (3) production of new HCO3

- In acidosis, the kidneys do not excrete HCO3 into the urine but reabsorb all the filtered HCO3 and produce new HCO3 which is added back to the extracellular fluid
- This reduces the extracellular fluid H⁺ concentration back toward normal

- In alkalosis the kidneys fail to reabsorb all the filtered HCO3 thus increasing the excretion of HCO3
- Because HCO3 normally buffers H⁺ in the extracellular fluid, this loss of HCO3 is the same as adding H⁺ to the extracellular fluid.
- In alkalosis the removal of HCO3 raises the extracellular fluid H⁺ concentration back towards normal

Secretion of H⁺ and Reabsorption of Bicarbonate by the Renal Tubules

 About 80 to 90 percent of the bicarbonate reabsorption and H⁺ secretion occurs in the proximal tubule Mechanism of Hydrogen ion secretion and Bicarbonate Reabsorption

Primary Active Secretion of H⁺ in the Intercalated Cells of Late Distal and Collecting Tubules

Buffering of Secreted Hydrogen Ions by Filtered Phosphate

Excretion of Excess H⁺ and Generation of New Bicarbonate by the Ammonia Buffer System

Buffering of hydrogen ion secretion by ammonia (NH₃) in the collecting tubules

Renal Correction of Acidosis-Increased Excretion of H⁺ and Addition of Bicarbonate to the ECF

- Acidosis decreases the ratio of Bicarbonate/Hydrogen ion in Renal Tubular Fluid
- As a result, there is excess H⁺ in the renal tubules, causing complete reabsorption of bicarbonate and still leaving additional H⁺ available to combine with the urinary buffers (phosphate and ammonia)
- Thus, in acidosis, the kidneys reabsorb all the filtered bicarbonate and contribute new bicarbonate through the formation of ammonium ions and titratable acid

Tubular Secretion of H⁺ and Increased Excretion of Bicarbonate

- Alkalosis increases the ratio of bicarbonate/hydrogen ion in renal tubular fluid
- The compensatory response to a primary reduction in PCO₂ in respiratory alkalosis is a reduction in plasma concentration, caused by increased renal excretion of bicarbonate

.

- In metabolic alkalosis, there is also an increase in plasma pH and decrease in H⁺ concentration
- The cause of metabolic alkalosis is a rise in the extracellular fluid bicarbonate concentration
- This is partly compensated for by a reduction in the respiration rate, which
 increases PCO₂ and helps return the extracellular fluid pH toward normal
- In addition, the increase in bicarbonate concentration in the extracellular fluid leads to an increase in the filtered load of bicarbonate which in turn causes an excess of bicarbonate over H⁺ secreted in the renal tubular fluid
- The excess bicarbonate in the tubular fluid fails to be reabsorbed because there is no H⁺ to react with, and it is excreted in the urine
- In metabolic alkalosis, the primary compensations are decreased ventilation, which raises PCO₂, and increased renal excretion of bicarbonate which helps to compensate for the initial rise in extracellular fluid bicarbonate concentration

	рН	H+	Pco ₂	Bicarbonate
Normal	7.4	40 mEq/L	40 mm Hg	24 mEq/L
Respiratory acidosis	\	1	$\uparrow \uparrow$	^
Respiratory alkalosis	1	1	$\downarrow \downarrow$	\
Metabolic acidosis	\	↑	\	$\downarrow \downarrow$
Metabolic alkalosis	1	4	1	$\uparrow \uparrow$

