
Paper Name: Programming Concepts

Topic: Strings in C

Paper Code: BCA GE202

Semester II

By Ms. Manisha Prasad

Head, Assistant Professor,

Department of Computer Science

Patna Women’s College

E – mail : manisha_prasad@yahoo.com

STRINGS

Strings are one-dimensional array of characters terminated by a null character

'\0'. This null character is treated as a single character by the compiler which is

actually a combination of backslash ‘\’ character and zero ‘0’. Thus a null-

terminated string contains the characters of the string followed by a null.

Following are the two ways to initialize a string. To hold the null character at the

end of the array, the size of the character array containing the string has to be

one more than the number of characters in the word.

1. char str[6] = {'H', 'e', 'l', 'l', 'o', '\0'}; or char str[] = {'H', 'e', 'l', 'l', 'o', '\0'};

or

2. char str[6] = "Hello"; or char str[] = "Hello";

If we do not initialize the index with the size of array, it is automatically

computed by the compiler as per the initialization.

The memory presentation of the above defined string variable str[6] is:-

 str[0] str[1] str[2] str[3] str[4] str[5]

H e l l o ‘\0’

In the first method of initialization, we have to specifically mention the null

character. In the second approach the C compiler automatically places the '\0' at

the end of the string when it initializes the array.

The strings can be printed using a printf() statement or puts() statement.

Similarly we can accept a string as an input using scanf() statement or gets()

statement. Unlike numeric arrays we do not need to print a string, element by

element(character by character). The C language does not provide an inbuilt data

type for strings but it has an access specifier “%s” which can be used to directly

print and read strings.

Example1:

#include <stdio.h>

void main()

{

 char str[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 printf("Greeting message: %s\n", str);

 getch();

}

On execution the output of the program will be:-

Greeting message: Hello

The scanf() function reads the sequence of characters until it encounters

whitespace (space, newline, tab etc.).

Example 2: scanf() to read a string

#include <stdio.h>

int main()

{

 char str[20];

 clrscr();

 printf("Enter name: ");

 scanf("%s", str);

 printf("Your name is %s", str);

 getch():

}

On execution the output of the program will be:-

Enter name: Amit Sinha

Your name is Amit.

Even though Amit Sinha was entered in the above program, only "Amit" was

stored in the name string. It's because there was a space after Amit.

How to read and display a string containing white space character?

We can use gets() and puts() statement

Example 3: gets() and puts()

#include <stdio.h>

include <conio.h>

void main()

{

 char str[20];

 clrscr();

 printf("Enter name: ");

 gets(str); // read string

 printf("Name: ");

 puts(str); // display string

 getch();

}

On execution the output of the program will be:-

Enter name: Amit Sinha

Name: Amit Sinha

We can also use the fgets() function to read a line of string and puts() to display

the string.

Example 4: fgets() and puts()

#include <stdio.h>

include <conio.h>

int main()

{

 char str[20];

 printf("Enter name: ");

 fgets(str, sizeof(str), stdin); // read string

 printf("Name: ");

 puts(str); // display string

 return 0;

}

Output:

Enter name: Amit Sinha

Name: Amit Sinha

Note: Both fgets() or gets() function take input from the user. Since gets()

allows you to input any length of characters. Hence, there might be a buffer

overflow. The sizeof(str) results to 20. Hence, we can take a maximum of 20

characters as input which is the size of the str[] string.

Many times we need to manipulate strings according to the need of a problem.

Most the time string manipulation can be done manually but this makes

programming complex and large. To solve this problem, C supports a large

number of string handling functions defined in the header file "string.h" present

in the standard library

Few commonly used string handling functions are discussed below:

Function Work of Function

strlen() computes string's length

strcpy() copies a string to another

strcat() concatenates(joins) two strings

strcmp() compares two strings

strlwr() converts string to lowercase

strupr() converts string to uppercase

The following example uses some of the above-mentioned functions −

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[10] = "Hello";

 char str2[10] = "World";

 char str3[20];

 int len ;

 /* copy str1 into str3 */

 strcpy(str3, str1);

 printf("strcpy(str3, str1) : %s\n", str3);

 /*concatenates(joins) str1 and str2 and after joining stores the resultant string in str1*/

 strcat(str1, str2);

 printf("strcat(str1, str2): %s\n", str1);

 /* total length of str1 after concatenation */

 len = strlen(str1);

 printf("strlen(str1) : %d\n", len);

 return 0;

}

When the above code is compiled and executed, it produces the following result

−

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

