
Paper Name: Software Engineering

Topic: Software Quality

Paper Code: BCA CC409

Semester IV

By Ms. Amrita Prakash

Assistant Professor,

Department of Computer Science

Patna Women’s College

 E-mail: amrita.bca@patnawomenscollege.in

Software Quality

• Software quality depends on various characteristics, such as correctness,

reliability and efficiency.

• The main objective of the software development team is to design the software

with required functionality and minimum errors according to specified user

requirements.

• Quality refers to the features and characteristics of a product or service, which

define its ability to satisfy user requirements.

• Software quality product is defined in term of its fitness of purpose.

• That is, a quality product does precisely what the users want it to do.

• For software products, the fitness of use is generally explained in terms of

satisfaction of the requirements laid down in the SRS document.

• Although "fitness of purpose" is a satisfactory interpretation of quality for

many devices such as a car, a table fan, a grinding machine, etc. for software

products, "fitness of purpose" is not a wholly satisfactory definition of quality.

Example: Consider a functionally correct software product. That is, it performs

all tasks as specified in the SRS document. But, has an almost unusable user

interface. Even though it may be functionally right, we cannot consider it to be a

quality product.

Software Quality refers to the extent to which the software is able to perform

correctly along with required features and functions. For this, a planned and

systematic set of activities is performed.

IEEE defines software quality as ‘(1) the degree to which a system, component
or process meets specified requirements.
(2) The degree to which a system, component or process meets customer or user
needs or expectations.

The modern view of a quality associated with a software product several

quality methods such as the following:

Portability: A software device is said to be portable, if it can be freely made to

work in various operating system environments, in multiple machines, with

other software products, etc.

Usability: A software product has better usability if various categories of users

can easily invoke the functions of the product.

Reusability: A software product has excellent reusability if different modules

of the product can quickly be reused to develop new products.

Correctness: A software product is correct if various requirements as specified

in the SRS document have been correctly implemented.

Maintainability: A software product is maintainable if bugs can be easily

corrected as and when they show up, new tasks can be easily added to the

product, and the functionalities of the product can be easily modified, etc.

The principles followed for achieving good quality software:-

• Prevention of Errors: In order to avoid errors in the code, software tools

are extensively used.

• Detection and Correction of Errors: Errors should be detected in the early

stages of Software Development, so that much time is not consumed to

correct them in the later stages. Thus, quality control should be carried

out during all phases of SDLC.

• Elimination of Cause (s) of Errors: After detection of errors, it is

necessary to eliminate their cause. Eliminating errors increases the quality

of the software.

• Independent Audit: The objective of an audit is to assess the product and

process activities. Thus, independent audit for product and processshould

be conducted in accordance with the standards and procedures established

in the quality process.

Software Quality Control

Software Quality Control is concerned with product quality and refers to

the functions of software quality, which determine that the software is

developed in accordance with standards and procedures.

In addition, Software Quality Control checks whether the product meets

user requirements or not.

Objectives of Software Quality Control are :-

• Comparison on product quality procedures with the established standards.

• Identification of errors in order to rectify them.

• Focus on reviews and testing the product.

• Identification of outputs generated by the product.

Software Quality Assurance

Software Quality Assurance is concerned with process quality and refers

to planned and systematic sets of activities that ensure that software

lifecycle processes and products conform to requirements, standards and

procedures.

Objectives of Software Quality Assurance are: -

• To determine the objectives of the software which are to be accomplished

• To establish the software plans, when the objectives are determined

• To monitor and adjust software plans to satisfy user requirements.

Software Quality Management System

A quality management system is the principal methods used by organizations to

provide that the products they develop have the desired quality.

A quality system subsists of the following:

Managerial Structure and Individual Responsibilities: A quality system is

the responsibility of the organization as a whole. However, every organization

has a sever quality department to perform various quality system activities. The

quality system of an arrangement should have the support of the top

management. Without help for the quality system at a high level in a company,

some members of staff will take the quality system seriously.

Quality System Activities: The quality system activities encompass the

following:

• Auditing of projects

• Review of the quality system

• Development of standards, methods, and guidelines, etc.

• Production of documents for the top management summarizing the

effectiveness of the quality system in the organization.

Evolution of Quality Management System

Quality systems have increasingly evolved over the last five decades. Before

World War II, the usual function to produce quality products was to inspect the

finished products to remove defective devices. Since that time, quality systems

of organizations have undergone through four steps of evolution, as shown in

the fig. The first product inspection task gave method to quality control (QC).

Quality control target not only on detecting the defective devices and removes

them but also on determining the causes behind the defects. Thus, quality

control aims at correcting the reasons for bugs and not just rejecting the

products. The next breakthrough in quality methods was the development of

quality assurance methods.

The primary premise of modern quality assurance is that if an organization's

processes are proper and are followed rigorously, then the products are

obligated to be of good quality. The new quality functions include guidance for

recognizing, defining, analyzing, and improving the production process.

Total quality management (TQM) advocates that the procedure followed by an

organization must be continuously improved through process measurements.

TQM goes stages further than quality assurance and aims at frequently process

improvement. TQM goes beyond documenting steps to optimizing them

through a redesign. A term linked to TQM is Business Process Reengineering

(BPR).

BPR aims at reengineering the method business is carried out in an

organization. From the above conversation, it can be stated that over the years,

the quality paradigm has changed from product assurance to process assurance,

as shown in fig.

In broader terms, the software quality definition of “fitness for purpose” refers

to the satisfaction of requirements. But what are requirements? Requirements,

also called user stories in today’s Agile terms, can be categorized as functional

and non-functional. Functional requirements refer to specific functions that the

software should be able to perform. For example, the ability to print on an HP

Inkjet 2330 printer is a functional requirement. However, just because the

software has a certain function or a user can complete a task using the software,

does not mean that the software is of good quality. There are probably many

instances where you’ve used software and it did what it was supposed to do,

such as find you a flight or make a hotel reservation, but you thought it was

poor quality. This is because of “how” the function was implemented. The

dissatisfaction with “how” represents the non-functional requirements not being

met.

For this purpose the International Organization for Standardization (ISO)

developed ISO 25010 as a model for specifying non-functional requirements.

The model shown below illustrates the categorization of non-functional

requirements.

At first glance, you may think that the left most characteristic, Functional

Suitability, is equivalent to a functional requirement, but it’s not. Sub-

characteristics functional completeness, functional correctness and functional

appropriateness apply to functions that have been implemented and are

characteristics of those functions. For instance, functional completeness is

defined as the degree to which the set of functions covers all the specified tasks

and user objectives. So, “Print from HP Inkjet 2330 Printer” could have been

implemented from a functional requirement point of view. But how was it

https://xbosoft.com/software-testing-services/agile-testing/
https://xbosoft.com/software-testing-services/functional-testing/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

implemented? Was it complete for all options? Did it have double-sided

printing? If not, then it might not be good quality from a functional

completeness point of view.

Software Quality Lifecycle

Here is yet another model: quality lifecycle. This model may be closer to how

you perceive quality. That is, quality from an end user viewpoint when they are

actually using the software in real life and not in a lab. That’s what “contexts of

use” means. For example, software quality testing can happen on a test server

and have perfect test results, but users in their environment may have different

results. They may not be able to find a button or control as easily as a tester

would, or maybe they want to print directly from a place in the application that

you never thought of.

Also important to note in Figure 2 is the use of the arrows and dotted lines.

You’ll notice that there is a relationship between internal quality, external

quality and quality in use. Namely, internal quality has an influence on, but not

a direct correlation with, external quality and that external quality depends on

internal quality. Let’s think about this. This means that you can have great code

quality (internal quality) and still have poor external quality (software

behaviour). This makes sense in reverse too. The software might work okay, but

the internal quality could be terrible.

