BCA sem IV

Paper: Software Engineering
Paper Code: BCA CC409

Topic : Software Design (Unit 3)

Faculty : Dr. Bhawna Sinha
(bhawna.sahay2004@gmail.com)

SOFTWARE DESIGN

Software design is a process to transform user requirements into some suitable form,
which helps the programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification)
document is created whereas for coding and implementation, there is a need of more
specific and detailed requirements in software terms. The output of this process can
directly be used into implementation in programming languages.

Software design is the first step in SDLC (Software Design Life Cycle), which moves the
concentration from problem domain to solution domain. It tries to specify how to fulfill
the requirements mentioned in SRS.

Software Design Levels
Software design yields three levels of results:

Architectural Design - The architectural design is the highest abstract version of the
system. It identifies the software as a system with many components interacting with
each other. At this level, the designers get the idea of proposed solution domain.

High-level Design- The high-level design breaks the ‘single entity-multiple component’
concept of architectural design into less-abstracted view of sub-systems and modules
and depicts their interaction with each other. High-level design focuses on how the
system along with all of its components can be implemented in forms of modules. It



recognizes modular structure of each sub-system and their relation and interaction
among each other.

Detailed Design- Detailed design deals with the implementation part of what is seen as
a system and its sub-systems in the previous two designs. It is more detailed towards
modules and their implementations. It defines logical structure of each module and their
interfaces to communicate with other modules.

Modularization

Modularization is a technique to divide a software system into multiple discrete and
independent modules, which are expected to be capable of carrying out task(s)
independently. These modules may work as basic constructs for the entire software.
Designers tend to design modules such that they can be executed and/or compiled
separately and independently. Modular design unintentionally follows the rules of ‘divide
and conquer’ problem-solving strategy this is because there are many other benefits
attached with the modular design of a software.

Advantage of modularization:

e Smaller components are easier to maintain
Program can be divided based on functional aspects
Desired level of abstraction can be brought in the program
Components with high cohesion can be re-used again.
Concurrent execution can be made possible
Desired from security aspect

Concurrency

Back in time, all softwares were meant to be executed sequentially. By sequential
execution we mean that the coded instruction will be executed one after another
implying only one portion of program being activated at any given time. Say, a software
has multiple modules, then only one of all the modules can be found active at any time
of execution.

In software design, concurrency is implemented by splitting the software into multiple
independent units of execution, like modules and executing them in parallel.



In other words, concurrency provides capability to the software to execute more than
one part of code in parallel to each other. It is necessary for the programmers and
designers to recognize those modules, which can be made parallel execution.

Example The spell check feature in word processor is a module of software, which runs
alongside the word processor itself.

Coupling and Cohesion

When a software program is modularized, its tasks are divided into several modules
based on some characteristics. As we know, modules are set of instructions put
together in order to achieve some tasks. They are though, considered as single entity
but may refer to each other to work together. There are measures by which the quality
of a design of modules and their interaction among them can be measured. These
measures are called coupling and cohesion.

Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements of
a module. The greater the cohesion, the better is the program design.

There are seven types of cohesion, namely —

e Co-incidental cohesion - It is unplanned and random cohesion, which might be
the result of breaking the program into smaller modules for the sake of
modularization. Because it is unplanned, it may serve confusion to the
programmers and is generally not-accepted.

e Logical cohesion - When logically categorized elements are put together into a
module, it is called logical cohesion.

e Temporal Cohesion - When elements of module are organized such that they
are processed at a similar point in time, it is called temporal cohesion.

e Procedural cohesion - When elements of module are grouped together, which
are executed sequentially in order to perform a task, it is called procedural
cohesion.

e Communicational cohesion - When elements of module are grouped together,
which are executed sequentially and work on same data (information), it is called
communicational cohesion.



e Sequential cohesion - When elements of module are grouped because the
output of one element serves as input to another and so on, it is called sequential
cohesion.

e Functional cohesion - It is considered to be the highest degree of cohesion,
and it is highly expected. Elements of module in functional cohesion are grouped
because they all contribute to a single well-defined function. It can also be
reused.

Coupling

Coupling is a measure that defines the level of inter-dependability among modules of a
program. It tells at what level the modules interfere and interact with each other. The
lower the coupling, the better the program.

There are five levels of coupling, namely -

e Content coupling - When a module can directly access or modify or refer to the
content of another module, it is called content level coupling.

e Common coupling- When multiple modules have read and write access to
some global data, it is called common or global coupling.

e Control coupling- Two modules are called control-coupled if one of them
decides the function of the other module or changes its flow of execution.

e Stamp coupling- When multiple modules share common data structure and
work on different part of it, it is called stamp coupling.

e Data coupling- Data coupling is when two modules interact with each other by
means of passing data (as parameter). If a module passes data structure as
parameter, then the receiving module should use all its components.

Ideally, no coupling is considered to be the best.

Design Verification

The output of software design process is design documentation, pseudo codes, detailed
logic diagrams, process diagrams, and detailed description of all functional or
non-functional requirements.

The next phase, which is the implementation of software, depends on all outputs
mentioned above.



It is then becomes necessary to verify the output before proceeding to the next phase.
The early any mistake is detected, the better it is or it might not be detected until testing
of the product. If the outputs of design phase are in formal notation form, then their
associated tools for verification should be used otherwise a thorough design review can
be used for verification and validation.

By structured verification approach, reviewers can detect defects that might be caused

by overlooking some conditions. A good design review is important for good software
design, accuracy and quality.

SOFTWARE DESIGN STRATEGIES

Software design is a process to conceptualize the software requirements into software
implementation.

Software design takes the user requirements as challenges and tries to find optimum
solution. While the software is being conceptualized, a plan is chalked out to find the
best possible design for implementing the intended solution.

There are multiple variants of software design.
Let us study them briefly:

Structured Design

Structured design is a conceptualization of problem into several well-organized
elements of solution. It is basically concerned with the solution design. Benefit of
structured design is, it gives better understanding of how the problem is being solved.
Structured design also makes it simpler for designer to concentrate on the problem
more accurately.



Structured design is mostly based on ‘divide and conquer’ strategy where a problem is
broken into several small problems and each small problem is individually solved until
the whole problem is solved.

The small pieces of problem are solved by means of solution modules. Structured
design emphasis that these modules be well organized in order to achieve precise
solution.

These modules are arranged in hierarchy. They communicate with each other.

A good structured design always follows some rules for communication among multiple
modules, namely -

Cohesion - grouping of all functionally related elements.
Coupling - communication between different modules.

A good structured design has high cohesion and low coupling arrangements.

Function Oriented Design

In function-oriented design, the system comprises many smaller sub-systems known as
functions. These functions are capable of performing significant tasks in the system.
The system is considered as the top view of all functions.

Function oriented design inherits some properties of structured design where divide and
conquer methodology is used.

This design mechanism divides the whole system into smaller functions, which provides
means of abstraction by concealing the information and their operation. These
functional modules can share information among themselves by means of information
passing and using information available globally.

Another characteristic of functions is that when a program calls a function, the function
changes the state of the program, which sometimes is not acceptable by other modules.
Function oriented design works well where the system state does not matter and
program/functions work on input rather than on a state.

Design Process



The whole system is seen as how data flows in the system by means of data flow
diagram.

DFD depicts how functions change the data and state of entire system.

The entire system is logically broken down into smaller units known as functions
on the basis of their operation in the system.

Each function is then described at large.

Object Oriented Design

Object oriented design works around the entities and their characteristics instead of
functions involved in the software system. This design strategy focuses on entities and
its characteristics. The whole concept of software solution revolves around the engaged
entities.

Let us see the important concepts of Object Oriented Design:

Objects - All entities involved in the solution design are known as objects. For
example, person, banks, company and customers are treated as objects. Every
entity has some attributes associated to it and has some methods to perform on
the attributes.

Classes - A class is a generalized description of an object. An object is an
instance of a class. Class defines all the attributes, which an object can have and
methods, which defines the functionality of the object.

In the solution design, attributes are stored as variables and functionalities are
defined by means of methods or procedures.

Encapsulation - In OOD, the attributes (data variables) and methods (operation
on the data) are bundled together is called encapsulation. Encapsulation not only
bundles important information of an object together, but also restricts access of
the data and methods from the outside world. This is called information hiding.
Inheritance - OOD allows similar classes to stack up in hierarchical manner
where the lower or sub-classes can import, implement and re-use allowed
variables and methods from their immediate super classes. This property of OOD
is known as inheritance. This makes it easier to define specific classes and to
create generalized classes from specific ones.

Polymorphism - OOD languages provide a mechanism where methods
performing similar tasks but vary in arguments, can be assigned the same name.
This is called polymorphism, which allows a single interface performing tasks for



different types. Depending upon how the function is invoked, the respective
portion of the code gets executed.

Design Process

Software design processes can be perceived as a series of well-defined steps. Though
it varies according to design approach (function oriented or object oriented, yet It may
have the following steps involved:

e A solution design is created from requirement or previous used system and/or
system sequence diagram.

e Objects are identified and grouped into classes on behalf of similarity in attribute
characteristics.
Class hierarchy and relation among them are defined.
Application framework is defined.

Software Design Approaches

There are two generic approaches for software designing:
Top down Design

We know that a system is composed of more than one sub-systems and it contains a
number of components. Further, these subsystems and components may have their
one set of sub-system and components and creates hierarchical structure in the system.

Top-down design takes the whole software system as one entity and then decomposes
it to achieve more than one sub-system or component based on some characteristics.
Each sub-system or component is then treated as a system and decomposed further.
This process keeps on running until the lowest level of the system in the top-down
hierarchy is achieved.

Top-down design starts with a generalized model of system and keeps on defining the
more specific part of it. When all components are composed the whole system comes
into existence.

Top-down design is more suitable when the software solution needs to be designed
from scratch and specific details are unknown.



Bottom-up Design

The bottom up design model starts with most specific and basic components. It
proceeds with composing higher level of components by using basic or lower level
components. It keeps creating higher level components until the desired system is not
evolved as one single component. With each higher level, the amount of abstraction is
increased.

Bottom-up strategy is more suitable when a system needs to be created from some
existing system, where the basic primitives can be used in the newer system.

Both, top-down and bottom-up approaches are not practical individually. Instead, a good
combination of both is used.



