

Paper Name: Database Management Systems

Topic: Concurrency Problem in DBMS

Paper Code: BCA CC410

By Ms. Manisha Prasad

Head, Assistant Professor,

Department of Computer Science

Patna Women’s College

Concurrency Problems in DBMS Transactions

We know that in real world applications the transactions cannot occur one by one

or serially, otherwise it would cause inordinate delays. Therefore we need to have

multiple transactions executing simultaneously or concurrently.

When multiple transactions execute concurrently in an uncontrolled or unrestricted

manner, then it might lead to several problems. These problems are commonly

referred to as concurrency problems and can lead to Inconsistency in the Database

environment. The concurrency problems that can occur in database are as follows:

1. Dirty Read Problem:

Dirty read problem occurs when one transaction updates an item and fails. But

the updated item is used by another transaction before the item is changed or

reverted back to its previous value.

Example:

T1 T2

R(X)

X=X+1

W(X)

 R(X)

 X=X+M

 W(X)

R(Y)

ABORTS DUE TO

SOME FAILURE

 AND ROLL BACK

In the above example, Let us assume that initial value of X is 10, T1 changed

the value of X to 11 by incrementing it and writing it in the local buffer, Now

transaction T2 reads the value of X as 11 and starts doing its work. Now if

transaction T1 fails for some reason, then the Transaction T1 will roll back

(Atomicity Property) and all data items will be restored to its previous

values. But transaction T2 has already read the incorrect value of X and

proceeded further.

https://www.geeksforgeeks.org/concurrency-control-in-dbms/

2. Unrepeatable Read Problem:

The unrepeatable problem occurs when two or more read operations of the

same transaction read different values of the same variable.

Example:

T1 T2

R(X)

 R(X)

X=X+1

W(X)

 R(X)

In the above example, once transaction T2 reads the variable X, a write

operation in transaction T1 changes the value of the variable X. Now in the

subsequent read operation Transaction T2 reads a different value of the same

data item.

For ex:- if the initial value of X was 10 both T1 and T2 read the value 10.

Then T1 incremented the value of X by 1 and made it 11 and wrote it in the

local buffer. When a another read operation is performed by transaction T2, it

reads the new value of X, i.e. 11 which was updated by transaction T1.

So for Transaction T2 there will be a confusion as to how the value of X

changed without any operation done by it.

We have to remember that the in the basic property of transaction (ACID

Property), ISOLATION property states that each transaction should run

in isolation of other transaction.

3. Phantom Read Problem:

The Phantom read problem occurs when a transaction reads a variable once

but when it tries to read that same variable again, an error occurs saying that

the variable does not exist.

Example:

T1 T2

R(X)

 R(X)

Delete (X)

 R(X)

In the above example, once transaction T2 reads the variable X, transaction T1

deletes the variable X without transaction T2’s knowledge. Thus, when

transaction T2 tries to read X, it is not able to do so.

4. Lost Update Problem(write –write conflict):

In the lost update problem, update done to a data item by a transaction is lost

as it is overwritten by the update done by another transaction.

Example:

T1 T2

R(X)

 R(X)

X=X+1

W(X)

 X= X+ 10

 W(X)

 COMMIT

 COMMIT

We already know that till the Transaction is not committed , all the

operations are performed in the local buffer or the main memory and

changes are done here by the transactions (as mentioned in Transaction

States) . Once all the operations are successful in the transaction , then it

is committed which means the changes are made permanently in the

Database.

In the above example, We assume that initial value of X was 10. Transaction

T1 changes the value of X to 11and writes it . however in the mean time

Transaction T2 changes the value of X to 20 , so the value of X gets

overwritten by the update done by transaction T2 on X, and commits first

making this value permanent in the Database. Therefore, the update done by

transaction T1 is lost because according to Transaction T1 the value should

have been 11 whereas the value of X in the database has become 20.

	Concurrency Problems in DBMS Transactions

