
Paper Name: Database Management System

Topic: Concurrency Control Protocols

Paper Code: BCA CC410

Semester IV

By Ms. Manisha Prasad

Head, Assistant Professor,

Department of Computer Science

Patna Women’s College

E – mail : manisha_prasad@yahoo.com

Concurrency Control Protocols/ Techniques

Time Stamp Ordering

We know that there are multiple transactions execute in concurrent manner,

trying to access data items at the same time. It is better to decide the order

between the transactions before they enter in the system so that in case of

any conflict, it can be decided which transaction should execute first.

In the timestamp based method, a serial order is created among the

concurrent transaction by assigning to each transaction a unique non

decreasing number.

The usual value assigned to each transaction is the value of the system

clock i.e. the time at which a transaction enters a system, hence name

Timestamp ordering. We know that no two systems will have the same

time stamp because at one instance of time only one process can enter the

system. A transaction with a smaller timestamp value is considered to be

an ‘older’ transaction than another transaction with a larger timestamp

value.

The serializability that the system enforces in the chronological order of

the timestamps of the concurrent transactions. If two transactions Ti and Tj

with the timestamp values ti and tj respectively, such that ti < tj are to run

concurrently, then the schedule produced by the system is equivalent to

running the older transaction Ti first, followed by the younger one Tj.

The contention problem between two transactions in the timestamp

ordering system is resolved by rolling back one of the conflicting

transactions.

A conflict is said to occur when an older transaction tries to

a) read a value that is written by a younger transaction.

b) Write/modify a value that has already been read or written by a

younger transaction.

In such cases the read and write operations requested by the older

transactions are not allowed and they need to rollback and enter the system

with a fresh timestamp. Thus the timestamp-ordering protocol guarantees

serializability. Timestamp protocol ensures freedom from deadlock as no

transaction ever waits. But the schedule may not be cascade-free, and may

not even be recoverable.

Problem with timestamp-ordering protocol:

Suppose Ti aborts, but Tj has read a data item written by Ti, Then Tj must

abort. if Tj had been allowed to commit earlier, the schedule is not

recoverable.

Further, any transaction that has read a data item written by Tj must abort.

This can lead to cascading rollback i.e. that is, a chain of rollbacks

Solution

A transaction is structured such that its writes are all performed at the

end of its processing

All writes of a transaction form an atomic action, no transaction may

execute while a transaction is being written

A transaction that aborts is restarted with a new timestamp

Locking Protocol

From the point of view of locking scheme a database can be considered as

being made up of set of data items. A lock is a mechanism to control

concurrent access to a data item A lock is a variable associated with each

data item which gives status about the availability of the data item. The

value of lock variable is used in the locking scheme to control the

concurrent access and manipulation of data associated data item. The

locking is done by a subsystem of the database management system called

Lock Manager. The Lock requests are made to concurrency-control

manager. Transaction can proceed only after request is granted. A locking

protocol is a set of rules followed by all transactions while requesting and

releasing locks. Locking protocols restrict the set of possible schedules.

Two types of locks are there.

1) Exclusive Locks : It is also called update or write lock. The intension of

this mode of locking is to provide exclusive use of the data item to one

transaction. If a transaction T locks the data item Q in an exclusive mode,

no other transaction can access Q, not even to read Q until the lock is

released by T.

2) Shared Lock : It is also called as read lock. Any number of transactions

can concurrently lock and access a data item in a shared mode. But none of

these transactions can modify the data item. A data item locked in a shared

mode can’t be locked in exclusive mode, until the shared lock is released.

To implement the locking concept following protocols are used.

1) Two phase protocol : It uses two phases for locking . i.e release of

the locks is delayed until all the locks on all data items required by

the transaction have been acquired. Two phases are a) Growing phase

In this the number of locks increases from zero to maximum for the

transaction. In this phase the transaction may obtain lock but may not

release any lock. b) Shrinking phase- In this the number of locks

decreases from maximum to zero. A transaction may release locks,

but may not obtain any new lock. Thus it is a protocol which ensures

conflict serializable schedules. It can be proved that the transactions

can be serialized in the order of their lock points i.e. the point where

a transaction acquired its final lock.

2) Graph based or intension locking protocol. It provides explicit

locking at the lower level of the tree and intension locks are applied

in all ancestors. Advantage of this protocol is that lock manager

knows that some where the lower level node is locked without having

the actual examination of lower level nodes. Thus Graph-based

protocols are an alternative to two-phase locking

 Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of

 all data items.

If di → dj then any transaction accessing both di and dj must

 access di before accessing dj .

 Implies that the set D may now be viewed as a directed acyclic

 graph, called a database graph.

The tree-protocol is a simple kind of graph protocol.

Only exclusive locks are allowed.

 The first lock by Ti may be on any data item. Subsequently, a data Q

can be locked by Ti only if the parent of Q is currently locked by Ti.

A

D

I

H G

I

E

F

C B

 - Data items may be unlocked at any time. - The tree protocol ensures

conflict serializability as well as freedom from deadlock.

- Unlocking may occur earlier in the tree-locking protocol than in the

two-phase locking protocol. shorter waiting times, and increase in

concurrency protocol is deadlock-free, no rollbacks are required the

abort of a transaction can still lead to cascading rollbacks.

- However, in the tree-locking protocol, a transaction may have to lock

data items that it does not access. increased locking overhead, and

additional waiting time potential decrease in concurrency

Schedules not possible under two-phase locking are possible under tree

protocol, and vice versa.

Validation Concurrency Control Technique

 In validation techniques or optimistic scheduling scheme it is assumed that

all data items can be successfully updated at the end of the transaction and

to read in the data values without locking. Reading is done if the data item

is found to be inconsistent (with respect to value read in) at the end of the

transaction, then the transaction is rolled back. There are 3 phases in

optimistic scheduling.

 Read phase: Various data items are read and stored in temporary local

variables. All operations are performed on these variables without

actually updating the database.

 During the validation phase, the transaction is validated to ensure that

the changes made will not affect the integrity and consistency of the

database. If the validation test is positive, the transaction goes to a

write phase. If the validation test is negative, the transaction aborts

and restarts after discarding the changes.

 Write phase If the transaction passes validation phase the

modification made by the transaction are committed i.e Written to the

database.

Optimistic scheduling does not use any lock hence it is deadlock free.

However it faces the problem of data starvation. Thus in validation

based protocols Execution of transaction Ti is done in three phases. 1.

Read and execution phase: Transaction Ti writes only to temporary

local variables 2. Validation phase: Transaction Ti performs a

“validation test” to determine if local variables can be written without

violating serializability. 3. Write phase: If Ti is validated, the updates

are applied to the database; otherwise, Ti is rolled back. The three

phases of concurrently executing transactions can be interleaved, but

each transaction must go through the three phases in that order. It is

called as Optimistic concurrency control since transaction executes

with a hope that all will go well during validation

