
DISTRIBUTED

SYSTEM

MANAGEMENT

1

MCA Sem IV

Paper Code-CS4T16

-- Dr. Bhawna Sinha

Department of MCA,

PWC

Introduction

• Distributed systems have multiple resources and hence, there is a need to

provide systems transparency

• One of the functions of a distributed operating system is to assign

processes to the nodes (resources) of the distributed system such that the

resource usage, response time, network congestion, and scheduling

overhead are optimized.

• System management can be categorized into resource management,

process management, and fault tolerance.

Scheduling Techniques in Distributed

System

• Task Assignment Approach

• Load Balancing Approach

• Load Sharing Approach

3

Scheduling Techniques

4

Task Assignment Approach, in which each process submitted by a

user for processing is viewed as a collection of related tasks and

these tasks are scheduled to suitable nodes so as to improve

performance.

Load-balancing approach, in which all the processes submitted by

the users are distributed among the nodes of the system so as to

equalize the workload among the nodes.

Load-sharing approach, which simply attempts to conserve the

ability of the system to perform work by assuring that no node is idle

while processes wait for being processed.

Desirable Features of Global Scheduling

Algorithm
• No A Priori knowledge about the Processes

• Ability to make dynamic scheduling decisions

• Flexible

• Stable

• Balanced System Performance and Scheduling Overhead

• Unaffected by system failures

• Scalable

5

No A Priori knowledge about the Processes
In computing, scheduling is the method by

which threads, processes or data flows are given access to system

resources (e.g. processor time, communications bandwidth). This is

usually done to load balance and share system resources effectively

or achieve a target quality of service.

Scheduling algorithms that operate based on the information about

the characteristics and resource requirements of the processes

pose an extra burden on the users who must provide this

information while submitting their processes for execution.

A good process scheduling algorithm should operate with absolutely

no a priori knowledge about the processes to be executed. Since it

places extra burden on the user to specify this information before

execution

6

Ability to make dynamic scheduling decisions

• Process assignment decisions should be dynamic, i.e., be based on the

current load of the system and not on some static policy. It is recommended

that the scheduling algorithm possess the flexibility to migrate a process more

than once because the initial decision of placing a process on a particular

node may have to be changed after some time to adapt to the new system

load.

• A good process scheduling algorithm should be able to take care of the

dynamically changing load (or status) of the various nodes of the system.

7

Flexible

• The algorithm should be flexible enough to migrate the process

multiple times in case there is a change in the system load.

• The algorithm should be able to make quick scheduling

decisions about assigning processes to processors.

8

Stability

• The algorithm must be stable such that processors do useful work, reduce

thrashing overhead and minimize the time spent in unnecessary migration of

the process.

• Example: it may happen that node n1 and n2 both observe that node n3 is

idle and then both offload a portion of their work to node n3 without being

aware of the offloading decision made by the other. Now if node n3 becomes

overloaded due to the processes received fro both nodes n1 and n2 , then it

may again start transferring its processes to other nodes. This entire cycle

may be repeated again and again, resulting in an unstable state. This is

certainly not desirable for a good scheduling algorithm.

9

Balanced system performance and scheduling

overhead
Algorithms that provide near-optimal system performance with a

minimum of global state information (such as CPU load) gathering

overhead are desirable. This is because the overhead increases as

the amount of global state information collected increases. This is

because the usefulness of that information is decreased due to both

the aging of the information being gathered and the low scheduling

frequency as a result of the cost of gathering and processing the extra

information.

10

Unaffected by system failures

• A good scheduling algorithm should not be disabled by the crash of one or

more nodes of the system. Also, if the nodes are partitioned into two or more

groups due to link failures, the algorithm should be capable of functioning

properly for the nodes within a group. Algorithms that have decentralized

decision making capability and consider only available nodes in their decision

making have better fault tolerance capability.

11

Scalability

A scheduling algorithm should scale well as the number of nodes increases. An

algorithm that makes scheduling decisions by first inquiring the workload from

all the nodes and then selecting the most lightly loaded node has poor

scalability. This will work fine only when there are few nodes in the system. This

is because the inquirer receives a flood of replies almost simultaneously, and

the time required to process the reply messages for making a node selection is

too long as the number of nodes (N) increase. Also the network traffic quickly

consumes network bandwidth. A simple approach is to probe only m of N nodes

for selecting a node.

12

TASK ASSIGNMENT APPROACH

Each process is divided into multiple tasks. These tasks are

scheduled to suitable processor to improve performance. This is

not a widely used approach because:

▪ It requires characteristics of all the processes to be known in

advance.

▪ This approach does not take into consideration the dynamically

changing state of the system.

13

Goal of the Task Assignment Approach

In this approach, a process is considered to be composed of multiple tasks and

the goal is to find an optimal assignment policy for the tasks of an individual

process.

◦ Minimization of IPC costs

◦ Quick turnaround time for the complete process

◦ A high degree of parallelism

◦ Efficient utilization of system resources in general

14

These goals often conflict. E.g., while minimizing IPC costs tends to assign all

tasks of a process to a single node, efficient utilization of system resources tries

to distribute the tasks evenly among the nodes.

Also note that in case of m tasks and q nodes, there are mq possible

assignments of tasks to nodes . In practice, however, the actual number of

possible assignments of tasks to nodes may be less than mq due to the

restriction that certain tasks cannot be assigned to certain nodes due to their

specific requirements (e.g. need a certain amount of memory or a certain data

file).

15

Assumptions For Task Assignment Approach

• A process has already been split into pieces called tasks.

• The amount of computation required by each task and the speed

of each processor are known.

• The cost of processing each task on every node of the system is

known.

• The Interprocess Communication (IPC) costs between every pair

of tasks is known.

• Other constraints, such as resource requirements of the tasks

and the available resources at each node, precedence

relationships among the tasks, and so on, are also known.

16

Task Assignment Approach Algorithms

• Graph Theoretic Deterministic Algorithm.

• Centralized Heuristic Algorithm.

• Hierarchical Algorithm.

17

Graph Theoretic Deterministic Algorithm

• This algorithm requires a system consisting of processes with known CPU and

memory requirements, and a known matrix giving the average amount of

traffic between each pair of processes. If the number of CPUs, k, is smaller

than the number of processes, several processes will have to be assigned to

each CPU. The idea is to perform this assignment such as to minimize

network traffic.

18

• Optimal assignments are found by first creating a static assignment graph. In

this graph, the weights of the edges joining pairs of task nodes represent inter-

task communication costs. The weight on the edge joining a task node to node

n1 represents the execution cost of that task on node n2 and vice-versa. Then

we determine a minimum cutset in this graph. A cutset is defined to be a set of

edges such that when these edges are removed, the nodes of the graph are

partitioned into two disjoint subsets such that nodes in one subset are

reachable from n1 and the nodes in the other are reachable from n2. Each

task node is reachable from either n1 or n2. The weight of a cutset is the sum

of the weights of the edges in the cutset. This sums up the execution and

communication costs for that assignment. An optimal assignment is found by

finding a minimum cutset.

19

Graph Theoretic Deterministic Algorithm Cont.

• Example 1:

• Network Traffic = 30

20

Graph Theoretic Deterministic Algorithm Cont.

• Example 2:

• Network Traffic = 28

21

Centralized Heuristic Algorithm
• Also called Top down algorithm

• Doesn’t require advance information

• Coordinator maintains the usage table with one entry for every user

(processor) and this is initially zero. When significant events happen,

messages sent to the coordinator and the table is updated.

• Usage table entries can either be zero, positive, or negative. Zero

value indicates a neutral state, a positive value implies that the

machine is user of system resources, and a negative value means

that the machine needs resources.

• The heuristic used for processor allocation is that when the CPU

becomes free, pending requests whose owners have the lowest

score win. As a result, a user who has a request pending for a long

time will always be allocated a processor first.

22

Centralized Heuristic Algorithm Cont.

23

Hierarchical Algorithm

• Centralized algorithms, such as up-down, do not scale well to large systems. The
central node soon becomes a bottleneck

• This problem can be attacked by using a hierarchical algorithm instead of a
centralized one.

• As the number of processors is increased, the number of level is increased.

• For each group of k workers, one manager machine is assigned the task of keeping
track of who is busy and who is idle. Each processor maintains communication with
one superior and a few subordinates.

• The information stream is managable, but the system could fail if any middle level
machine fails.

• The allocation algorithm works between two levels in the group. The situation is
complex because at any instant of time, multiple requests are in various stages of
allocation, leading to outdated available worker estimates.

24

Hierarchical Algorithm

25

3.3 Load Balancing Approach

• Processing speed of a system is always highly intended.

• Distributed computing system provides high performance environment that are able to

provide huge processing power.

• In distributed computing thousand of processors can be connected either by wide area

network or across a large number of systems which consists of cheap and easily available

autonomous systems like workstations or PCs.

• The distribution of loads to the processing elements is simply called the load balancing.

• The goal of the load balancing algorithms is to maintain the load to each processing

element such that all the processing elements become neither overloaded nor idle that

means each processing element ideally has equal load at any moment of time during

execution to obtain the maximum performance (minimum execution time) of the system.

26

Load Balancing
• Load balancing is the way of distributing load units (jobs or tasks)

across a set of processors which are connected to a network which
may be distributed across the globe.

• The excess load or remaining unexecuted load from a processor is
migrated to other processors which have load below the threshold
load.

• Threshold load is such an amount of load to a processor that any load
may come further to that processor.

• By load balancing strategy it is possible to make every processor
equally busy and to finish the works approximately at the same time.

27

Taxonomy Of Load Balancing

Load Balancing

Static

Deterministic Heuristic/Probabilistic

Dynamic

Centralized Distributed

28

Static Load Balancing

• In static algorithm the processes are assigned to the processors at the compile time

according to the performance of the nodes.

• Once the processes are assigned, no change or reassignment is possible at the run time.

• Number of jobs in each node is fixed in static load balancing algorithm. Static

algorithms do not collect any information about the nodes .

29

Sub Classes of SLB

• The static load balancing algorithms can be divided into two sub

classes:

• Optimal static load balancing (Deterministic)

• Sub optimal static load balancing (Probabilistic)

• Optimal Static Load Balancing Algorithm

• If all the information and resources related to a system are known
optimal static load balancing can be done such as the list of
processes, computing requirements, file requirements and
communication requirements

30

Sub Optimal Static Load Balancing Algorithm

• Sub-optimal load balancing algorithm will be mandatory for some applications when

optimal solution is not found.

• In case the load is unpredictable or variable from minute to minute or hour to hour.

31

Dynamic Load Balancing
• In dynamic load balancing algorithm assignment of jobs is done at the

runtime.

• In DLB jobs are reassigned at the runtime depending upon the

situation that is the load will be transferred from heavily loaded nodes

to the lightly loaded nodes.

• In dynamic load balancing no decision is taken until the process gets

execution.

• This strategy collects the information about the system state and

about the job information.

• As more information is collected by an algorithm in a short time,

potentially the algorithm can make better decision.

32

Figure: Job Migration in Dynamic Load Balancing Strategy

33

Centralized Vs Distributed

• A centralized dynamic scheduling algorithm means that the scheduling

decision is carried out at one single node called the centralized node. This

approach is efficient since all information is available at a single node.

• Drawback for centralized approach is it leads to a bottleneck as number of

requests increase .

• In a distributed algorithm the task of processor assignment is physically

distributed among various nodes .

• In distributed algorithm scheduling decisions are made on individual nodes.

34

Cooperative Vs non-cooperative

• Cooperative Algorithm distributed entities cooperate with each other to make

scheduling decisions

• Non-Cooperative algorithm the individual entities make independent

scheduling decisions and hence they involve minor overheads

• Cooperative algorithms are more complex than non-cooperative ones

• Non-cooperative algorithms may not be stable

35

Issues in designing in load balancing algorithms

• Deciding policies for:

• Load estimation: determines how to estimate the workload of a node in a distributed

system.

• Process transfer: decides whether the process can be executed locally or there is a need

for remote execution.

• Static information exchange: determines how the system load information can be

exchanged among the nodes.

• Location Policy: determines the selection of a destination node during process migration

• Priority assignment: determines the priority of execution of a set of local and remote

processes on a particular node

36

Policies for Load estimation

• Parameters:

• Time dependent

• Node dependent

37

Measuring Number of processes running on a

machine
• One way to estimate the load is to calculate the number of processes running

on the machine

• The process count is not the correct answer for load calculation because the

machine can have many processes running, such as mail, news, windows

managers, etc both in foreground and background

38

Capturing CPU busy time

• The other technique is to capture the CPU busy-time.

• A machine with 75% CPU utilization is more heavily loaded than a machine

with 40% CPU utilization.

• CPU utilization can be measured be measured by allowing a timer to interrupt

the machine to periodically observe the CPU state and find the fraction of idle

time.

39

Policies for Process transfer

• Load balancing strategy involves transferring some processes from heavily

loaded nodes to lightly nodes

• So there is a need to decide a policy which indicates whether a node is heavily

or lightly loaded, called threshold policy.

• This threshold is a limiting value which decides whether a new process, ready

for execution or transferred to a lightly loaded node

• Threshold policy

• Static

• Dynamic

40

Threshold Policies

• Threshold policy

• Static: each node has a predefined threshold value depending on its processing capability,

which does not vary with load. The advantage of this method is that there is no need for any

exchange of state information to decide the threshold value

• Dynamic: the threshold value is calculated as an average workload of all nodes. This policy

gives a realistic value but involves the overhead of state information exchange among

nodes to determine the threshold value.

41

Threshold Policy Cont.

• Single-level threshold: a node accepts a new process as long
as its load is below the threshold, else it rejects the process as
well as the requests for remote execution.

• The use of this policy may lead to useless process transfer,
leading to instability in decisions. This may happen in a
situation where a node accepts a new or a remote process
when the load is below threshold , but its load may become
larger than threshold just when the remote process arrives for
execution.

42

Threshold Policy Cont.

• Two-level threshold policy: this policy is preferred to avoid instability it has

two threshold levels: high and low marks. The load states of a node can be

divided into three regions: overloaded, normal and under-loaded

43

Location policies

• Once the threshold transfer policy decides to transfer a process from a node,

the next step is to use a location policy to select the destination node where

the process can be executed.

44

Threshold policy

• In the threshold policy, the destination node is selected at random and a check

is made to verify whether the remote process transfer would load that node, If

not, the process transfer is carried out; else another node is selected at

random and probed. This process continues till a suitable destination node is

found or the number of nodes probed exceeds a probe limit(defined by the

system)

45

Shortest Location policy

• Nodes are chosen at random and each of these nodes is polled to check for

load.

• The node with the lowest load value is selected as the destination node.

• Once selected the destination node has to execute the process irrespective of

its state at the time the process arrives.

• In case non of the polled nodes can accept the process it will be executed at

the source node itself

46

Bidding Location Policy
• This policy transforms the system into a market scenario with buyers

and sellers of services.
• Each node is assigned two roles, namely the manager and the

contractor.
• The manager is an under loaded node having a process which

needs a location and the contractor is a node which can accept
remote processes.

• The manager broadcasts a request for a bid message to all nodes
and the contractors send their bids to the manager node

• The bid contains information about processing power, and memory
size

• The manager chooses the best bid which is the cheapest, and
fastest then the process transferred to the winning contractor node.

• If the contractor won too many bids at a time from many managers
this may become overload, so when the best bid is selected a
message sent to the owner of the bid which can weather accept or
reject the process

47

Pairing Policy

• The policies discussed earlier focus on load balancing across

the systems, while the pairing policy focuses on load balancing

between a pair of nodes

• Two nodes which have a large difference of load balancing

between a pair of nodes are paired together temporarily

• The load balancing is carried out between the nodes belonging

to the same pair by migrating processes from the heavily

loaded node to the lightly loaded node

• Several pairs of nodes can exist in the system simultaneously

48

State information exchange

• Dynamic policies require frequent exchange of state information among the

nodes of a system

• Decision based on state information

49

Periodic Broadcast
•

50

Broadcast when state changes

and on-demand exchange of state information
•

51

Exchange by polling

• Broadcasting occurs only when a node needs cooperation from another node

for load balancing

• It search for a suitable partner by polling all nodes one by one and exchanging

state information

• The polling process is stopped when a suitable pair is found or a predefined

poll limit is reached

52

3.4 Load Sharing Approach
• Load balancing approaches attempt to equalize the workload

on all the nodes of a system by gathering state information

• Load sharing algorithms do not attempt to balance the average

workload on all nodes, they only ensure that no node is idle or

heavily loaded

• Policies for load sharing approach are the same as load

balancing polices, they include load estimation policy, process

transfer policy, location policy and state information exchange,

they differ in location policy

53

Location sharing policies

Location policy for load sharing approach

• Sender Initiated algorithm uses sender of the process to decide where to

send the process

▪ The heavily loaded node search for lightly loaded nodes where the process can be

transferred

▪ When a load on a node increases beyond the threshold , it probes nodes to find a lightly

loaded node .

▪ A node can receive a process only if its transfer will not increase its load beyond the

threshold .

▪ If a suitable node is not found the process will be executed on the same node.

54

Location policy for load sharing approach cont.

• Receiver initiated location policy

• In this policy lightly loaded nodes search for heavily loaded nodes from which processes

can be accepted for execution .

• When the load on a node falls below a threshold value, it broadcasts a probe message to all

nodes or probes nodes one by one to search for a heavily loaded node

• A node can transfer one of its processes if such a transfer does not reduce its load below

normal threshold

55

