
PROCESS MANAGEMENT IN A

DISTRIBUTED ENVIRONMENT

1

MCA Sem IV

Paper Code-CS4T16

-- Dr. Bhawna Sinha

Department of MCA,

PWC

Process Management in a Distributed

Environment
• Main goal of process management in DS is to make best possible use of existing

resources by providing mechanism and polices for sharing them among processors

• This achieve by providing :

• Process allocation : decide which process should assign to which process in any

instance of time for better utilization of resources .

• Process migration : move process to new node for better utilization of resources

• Thread facilities : provide mechanism for parallelism for better utilization of

processor capabilities.

2

Types of process migration

Process Management in a Distributed Environment

Main Functions of distributed process management
• Process allocation :decide which process should assign to which process in

any instance of time

• Process Migration: Change of location and execution of a process from

current processor to the destination processor for better utilization of resources

and balancing load in distributed system.

3

3.6 Process Management in a Distributed Environment

Process Migration classified into :

• Non-preemptive : process is migrate before start execution in

source node .

• Preemptive : process is migrate during its execution .

4

Types of process migration

Desirable features of a good process

migration mechanism

• Transparency:

• Minimal interference:

▪ To the progress of process and system

▪ Freezing time : time period for which the execution of the process is

stopped for transferring its info to destination node

• Minimal residual dependencies:

▪ Migrated process should not depend on its previous node

5

Desirable features of a good process migration

mechanism Cont.

• Efficiency:

▪ Issues

• Time required to migrate process

• Cost of locating the object

• Cost of supporting remote execution once the process is migrated

• Robustness :

▪ Failure of any other node should not affect the accessibility or

execution of the process

• Ability to communicate between co processes of the job:

▪ Communication directly possible irrespective of location

6

3.7 PROCESS MIGRATION

7

3.7 Process Migration

• In computing, process migration is a specialized form of process

management whereby processes are moved from one computing

environment to another.

Steps involved in process

migration

⮚Freezing the process on its source and restarting it on its destination

⮚Transferring the process’s address space (program code – data –stack

program) from its source to destination

⮚Forwarding messages meant for the migrant process

⮚Handling communication between cooperating process

8

Mechanism

9

Process migration mechanism

Freezing process on source node
• Take snapshot of process’s state on its source node

▪ Reinstate the snapshot on the destination node

▪ Issues

• Immediate and delayed blocking of the process

• Fast and slow I/O operations

oAfter process is blocked wait for completion of fast I/O operations , then process is frozen

o Slow I/O performed after migration

• Information about open files

oUse of Links to remote files

oUse of local files as far as possible

• Reinstating the process on its destination node

• Constructing a new copy in the destination

10

Address space transport mechanisms-

1
• Information to be transferred

▪ Process’s state

• Execution status

• Scheduling info

• Info about RAM

• I/O states

• Objects for which the process has access rights

• Info about files opened etc.

11

▪ Process’s address space (code, data &

stack)

• Higher in size than process’s state info

• Can be transferred after migration, before

or after process starts executing

• Address space transfer mechanisms

o Total freezing

o Pretransferring

o Transfer on reference

Address space transport mechanisms-

1

12

Address space transport mechanism

Address space transport mechanisms-

2
• Total Freezing

▪ Process’s execution is stopped while transferring the address space

▪ Disadvantage that process may be suspended for a long time

13

Total freezing mechanism

Address space transport mechanisms-3

14

Pretransfer mechanism

🠶 Pretransfering or Precopying

▪ Address space transferred while process is running on the source node

Address space transport mechanisms-

3
• Pretransfering or Precopying

▪ Address space transferred while process is running on the source node

▪ After decision for migration is made process continues to execute on

source node until address space is has been transferred

▪ Initially entire address space is transferred followed by repeated

transfers of pages modified during previous transfer so on until no

reduction in number of pages is achieved

▪ The remaining pages are transferred after the process is frozen for

transferring its state info

▪ Freezing time is reduced

▪ Migration time may increase due to possibility of redundant transfer

of same pages as they become dirty while pretransfer is being done

15

Address space transport mechanisms-4

• Transfer on Reference

▪ Process executes on destination

▪ Address space is left behind in source node

▪ Desired blocks are copied from remote

locations as and when required

▪ Failure of source node results in failure of

process

16

Transfer on Reference mechanism

Messages Forwarding
• Track and forward messages which have arrived on source

node after process migration

17

Messages Forwarding
• Messages

▪ Messages received at source node after the

process stopped on its source node and not

started on the destination node

▪ Messages received at source node after execution

▪ Messages of process started at destination node

18

Message forwarding Mechanisms

• Return message to sender as undeliverable

▪ Message type 1 and 2are returned to sender or dropped

▪ Sender retries after locating the new node (using locate operation)

▪ Type 3 message directly sent to new node

• Origin site mechanism

▪ All messages are sent to origin site

▪ Origin site forwards the messages

▪ If origin site fails forwarding mechanism fails

▪ Continuous load on the origin site

19

Messages Forwarding Message

forwarding Mechanisms
• Link traversal mechanism

▪ Message queue is generated at origin

▪ Message Forwarded to destination node

▪ After process is migrated link is left on the previous node

▪ Process address has two parts process id, last known location of destination node

20

Advantages of process migration

• Reduce average response time of heavily loaded nodes

• Speed up of individual jobs

• Better utilization of resources

• Improve reliability of critical processes

21

3.8 THREADS

22

PROCESS V/S

THREADS

23

• Programs are divided to process , which that can be

independently executed .

• Process can block itself , while waiting for some other operation

to be complete , and program execution can slow down .

• We cannot use multiple processes , since processes don’t share

address space. Instead if this process is divided into threads, one

of the threads can go to sleep , while other threads may continue

execution. thus , system throughput is increased and this in turn

improve system performance .

Process v/s threads
• Analogy:

• Thread is to a process as process is to a machine

24

Process address space

Comparison

25

Comparison of processes and threads

Thread models

• Dispatcher worker model

• Team model

• Pipeline model

26

Thread: Dispatcher worker model

Typical example of this model is server process such as file

server that :

1. Accept request from client .

2. Check for access permission.

3. Accordingly services the request.

27

Thread: Dispatcher worker model

• Assume that Single process is divided
into one dispatcher and multiple worker

• Dispatcher thread accept incoming
request from client request queue.

• Examine request and choose idle worker
thread to handle request.

• Thus worker thread change its state to
running and dispatcher change state to
ready .

• Since each worker thread processes
different client request , multiple request
can be processed in parallel.

28

Thread: Team model

• All threads are treated equal ,

such that each one handle

request on its own .

• In case threads are capable of

performing specific distinct

function , a queue can be

maintained .

• When thread change state from

running to idle , it take new

request from the job queue and

stars execution .

29

Thread: Pipeline model

• Used pipeline concept that used in
CPU instructions executions.

• The tasks assigned to the threads
are completed and the result
generated by first thread are passed
to next thread .

• It take this as input and start
running .

• Data pass across multiple threads
with each one processing it partly
and the last thread giving the final
result .

30

Design issues in threads

• Thread semantics

• Thread creation, termination

• Thread synchronization

• Thread scheduling

31

Design issues in threads : Thread

semantics

• The first step before using threads is thread creation that cab be :

- Static .

-Dynamic .

32

Design issues in threads : Thread

semantics

• Static : number of threads to be created is fixed when program is

written or when it is complied , and memory space is allocate to

each thread.

33

Design issues in threads : Thread

semantics

• Dynamic : threads are created as and when it is needed during

the process life cycle .and they exit when task is completed

.Here the stack size for the threads is specified as parameter to

the system call for thread creation.

34

Design issues in threads : Thread

semantics

• Threads termination : threads follow the same steps for termination

as processes either :

- EXIT call command : thread destroys itself on task completion by making

an EXIT call .

-KILL call command :or thread is killed from outside using KILL command

with thread id as parameter.

35

Design issues in threads

36

🠶 Thread semantics

• Thread creation, termination

🠶 Thread synchronization

🠶 Thread scheduling

Thread synchronization

• Since threads belong to process share the same address space ,

thread synchronization are required to ensure that multiple threads

don’t access the same data simultaneously.

• For example , if two threads want to double the same global variable

, it is best done one after another.

37

Thread synchronization : example

• if two threads want to double the same global variable , it is best

done one after another.

• One thread should exclusive access to shared variable , double it ,

and pass control to the other thread.

• To provide exclusive access to shared variables , we define critical

region .It mean that only one thread can execute in critical region at

any instance of time.

• Critical region is implemented using mutex variable , which is binary

semaphore: locked and unlocked

38

Thread synchronization
• Execution in Critical region

• Use binary semaphore

• The lock operation attempts to lock the mutex.

It successes if unlocked m and mutex become

locked in single atomic action.

• If two threads try to lock the same mutex at

the same time , only one successes , while the

other thread is blocked .

39

Implementation of critical region

Design issues in threads

• Thread semantics

• Thread creation, termination

• Thread synchronization

• Thread scheduling

40

Threads scheduling

• Another important issue in designing threads package is to

decide an appropriate scheduling algorithm.

• The Threads packages provide application programmer with

calls to specify scheduling policy to be used for application

execution .

41

Threads scheduling

policies/algorithms

• Priority assignment facility

• Choice of dynamic variation of quantum size

• Handoff scheduling scheme

• Affinity scheduling scheme

• Signals used for providing interrupts and exceptions

42

Implementing thread package

• Typically any OS divides memory into users and

kernel space to store programs and data .

• Thread package can be implemented either in

▪ user space

▪ kernel space .

43

Implementing thread package
• User level approach

Kernel level approach

44

Comparison of thread implementation-1

45

User- level vs. kernel-level thread implementation

Comparison of thread implementation-2

46

Threads and Remote execution
There are two different ways of remote execution of thread

:

• RPC : distributed systems commonly use RPC (remote procedure call).

• RMI (remote method invocation) and Java threads

47

Types of RPC execution in distributed system

