PROCESS MANAGEMENT IN A
DISTRIBUTED ENVIRONMENT

MCA Sem IV
Paper Code-CS4T16

-- Dr. Bhawna Sinha
Department of MCA,
PWC

Process Management in a Distributed
Environment

- Main goal of process management in DS is to make best possible use of existing
resources by providing mechanism and polices for sharing them among processors

- This achieve by providing :

- Process allocation : decide which process should assign to which process in any
Instance of time for better utilization of resources .

- Process migration : move process to new node for better utilization of resources

- Thread facilities : provide mechanism for parallelism for better utilization of
processor capabilities.

Types of process migration

Process Management in a Distributed Environment

Main Functions of distributed process management

Process allocation :decide which process should assign to which process in
any instance of time

Process Migration: Change of location and execution of a process from
current processor to the destination processor for better utilization of resources

and balancing load in distributed system.

3.6 Process Management in a Distributed Environment

Process Migration classified into :

Non-preemptive : process is migrate before start execution in
source node .

- Preemptive : process is migrate during its execution .

Process
migration

Preemptive Non-preemptive
process process
migration migration

Types of process migration

Desirable features of a good process
migration mechanism

- Transparency:

- Minimal interference:
- To the progress of process and system

- Freezing time : time period for which the execution of the process is
stopped for transferring its info to destination node

- Minimal residual dependencies:
- Migrated process should not depend on its previous node

Desirable features of a good process migration
mechanism Cont.

- Efficiency:
- |ssues
- Time required to migrate process

- Cost of locating the object
- Cost of supporting remote execution once the process is migrated

- Robustness :

- Failure of any other node should not affect the accessibility or
execution of the process

- Ability to communicate between co processes of the job:
- Communication directly possible irrespective of location

3.7 PROCESS MIGRATION

I N
3.7 Process Migration

- In computing, process migration is a specialized form of process
management whereby processes are moved from one computing
environment to another.

Steps involved In process
migration

»Freezing the process on its source and restarting it on its destination

> Transferring the process’s address space (program code — data —stack
program) from Its source to destination

»Forwarding messages meant for the migrant process
»Handling communication between cooperating process

Mechanism
Sourge Destination
nade nulde
|
Time Process Py in i
Exacution exeqution E
suspended | i
time I bl Exacution
i resumed
L E Prooess Fl in
I exacution

T

Process migration mechanism

Freezing process on source node

- Take snapshot of process’s state on its source node
- Reinstate the snapshot on the destination node

- |Issues
Immediate and delayed blocking of the process

Fast and slow 1/O operations
o After process is blocked wait for completion of fast I/O operations , then process is frozen
o Slow 1/O performed after migration
Information about open files
o Use of Links to remote files
o Use of local files as far as possible
Reinstating the process on its destination node

Constructing a new copy in the destination

Address space transport mechanisms-

- Information to be transferred

- Process’s state = Process’s address space (code, data &
- Execution status stack)

- Scheduling info

- Info about RAM o
» Can be transferred after migration, before
- 1/O states

or after process starts executing

 Higher in size than process’s state info

- Objects for which the process has access rights

. Info about files opened etc. - Address space transfer mechanisms

o Total freezing
o Pretransferring

o Transfer on reference

Address space transport mechanisms-

1

'Mdrmmm'

transport
mm

l l |

freezing Pretransfer on reference

Address space transport mechanism

2

- Total Freezing
- Process’s execution is stopped while transferring the address space
- Disadvantage that process may be suspended for a long time

Source Destination
node node
[}
Time E
i
Execution i
suspended | Migration decision made :
T | |
| |
|
Freezing i <! Tansfer of
' i address space
|
I |
1 1
: I Execution
! resumed
i
I

Total freezing mechanism

Address space transport mechanisms-3
Pretransfering or Precopying
= Address space transferred while process is running on the source node

Exeaution
suspended

Figura 6-18 Pretransfer

Pretransfer mechanism

Address space transport mechanisms-

° Pre§ansfering or Precopying
- Address space transferred while process is running on the source node

- After decision for migration is made process continues to execute on
source node until address space is has been transferred

- Initially entire address space is transferred followed by repeated
transfers of pages modified during previous transfer so on until no
reduction in number of pages is achieved

- The remaining pages are transferred after the process is frozen for
transferring its state info

- Freezing time is reduced

- Migration time may increase due to possibility of redundant transfer
of same pages as they become dirty while pretransfer is being done

Address space transport mechanisms-4

Source Destination
- Transfer on Reference node node

- Process executes on destination
- Address space is left behind in source node

- Desired blocks are copied from remote i
locations as and when required time

- Failure of source node results in failure of
process

=
S

i

Migration dedsion made

| Execution
resumed

a—t— On-demand transfer
of address space

S

Transfer on Reference mechanism

Messages Forwarding

- Track and forward messages which have arrived on source
node after process migration

Message

forwarding
mechanisms
Retum messages Origin Link Link

to the sender as
iruialionrd sites traversal update

Messages Forwarding

- Messages

- Messages received at source node after the
process stopped on its source node and not
started on the destination node

- Messages received at source node after execution
- Messages of process started at destination node

Message forwarding Mechanisms

- Return message to sender as undeliverable
- Message type 1 and 2are returned to sender or dropped

- Sender retries after locating the new node (using locate operation)
- Type 3 message directly sent to new node

- Origin site mechanism
- All messages are sent to origin site
- Origin site forwards the messages
- If origin site fails forwarding mechanism fails
- Continuous load on the origin site

Messages Forwarding Message

forwarding Mechanisms
- Link traversal mechanism
- Message queue Is generated at origin
- Message Forwarded to destination node
- After process iIs migrated link is left on the previous node
- Process address has two parts process id, last known location of destination node

Advantages of process migration

- Reduce average response time of heavily loaded nodes
- Speed up of individual jobs
- Better utilization of resources

- Improve reliability of critical processes

3.8 THREADS

THREADS

* Programs are divided to process , which that can be
Independently executed .

* Process can block itself , while waiting for some other operation
to be complete , and program execution can slow down .

* We cannot use multiple processes , since processes don’t share
address space. Instead if this process is divided into threads, one
of the threads can go to sleep , while other threads may continue
execution. thus , system throughput is increased and this in turn
Improve system performance .

Process Vv/s threads

- Analogy:
- Thread is to a process as process is to a machine

Address space of process

Single thread Multiple thread

Process address space

Criteria Process Thread
Control Process Control Block (PCB): Thread Control Block (TCB):
block program counter, stack, and program counter, stack, and
register states: open files, child register states
processes, semaphores, and
timers
Address Separate for different processes, | Share process address space,
space provides protection among no protection between threads
processes belonging to the same process
Creation overhead | Large Small
Context switching | Large Small

time

Objective of
creation

Resource utilization, to be
competitive

Use pipeline concept, to be
cooperative

Comparison of processes and threads

Thread models

- Dispatcher worker model
- Team model

- Pipeline model

Thread: Dispatcher worker model

Typical example of this model is server process such as file
server that :

1. Accept request from client .
2. Check for access permission.
3. Accordingly services the request.

Thread: Dispatcher worker model

Assume that Single process is divided pig i ol

Into one dispatcher and multiple worker \

Dispatcher thread accept incoming Qe

request from client request queue. | Worker

Dispatcher threads

Examine request and choose idle worker
thread to handle request.

Thus worker thread change its state to
running and dispatcher change state to
ready .

Since each worker thread processes

different client request , multiple request
can be processed in parallel.

Thread: Team model

- All threads are treated equal ,
such that each one handle
request on Its own .

- In case threads are capable of
performing specific distinct
function , a queue can be
maintained .

- When thread change state from
running to idle , it take new
request from the job queue and
stars execution .

Running

Thread: Pipeline model

Used pipeline concept that used In
CPU Instructions executions. Reques pot

The tasks assigned to the threads
are completed and the result
generated by first thread are passed
to next thread .

It tak_e this as input and start Al el
running .

Data pass across multiple threads
with each one processing it partly
and the last thread giving the final
result .

Design issues In threads

- Thread semantics
- Thread creation, termination

- Thread synchronization
- Thread scheduling

Design issues in threads : Thread
semantics

- The first step before using threads is thread creation that cab be :
- Static .
-Dynamic .

Design issues in threads : Thread
semantics

- Static : number of threads to be created is fixed when program is
written or when it Is complied , and memory space is allocate to
each thread.

Design issues In threads : Thread
semantics

Dynamic : threads are created as and when it is needed during
the process life cycle .and they exit when task is completed
.Here the stack size for the threads is specified as parameter to
the system call for thread creation.

Design issues In threads : Thread

semantics

- Threads termination : threads follow the same steps for termination
as processes either :

- EXIT call command : thread destroys itself on task completion by making

an EXIT call .

-KILL call command :or thread is Kkilled from outside using KILL command

with thread id as parameter.

Design issues In threads

Thread semantics

* Thread creation, termination

Thread synchronization

Thread scheduling

Thread synchronization

- Since threads belong to process share the same address space ,
thread synchronization are required to ensure that multiple threads

don’t access the same data simultaneously.

- For example , if two threads want to double the same global variable

1t 1S best done one after another.

Thread synchronization : example

- If two threads want to double the same global variable , it is best
done one after another.

- One thread should exclusive access to shared variable , double it ,
and pass control to the other thread.

- To provide exclusive access to shared variables , we define critical
region .It mean that only one thread can execute in critical region at
any instance of time.

- Critical region is implemented using mutex variable , which is binary
semaphore: locked and unlocked

Thread synchronization
- Execution in Critical region Treadl Thvead?

- Use binary semaphore

- The lock operation attempts to lock the mutex. Lock (mz A Lok (Mutex A)fl
It successes if unlocked m and mutex become el L = Wt (A, free)

. L Critcal reglon |

locked in single atomic action. (uss shard resource) Blocked state

- If two threads try to lock the same mutex at L £

: : Lock (mute
the same time , only one successes , while the Ug‘ww&)‘) ' ' am(eds W
other thread is blocked . Mutex A Is a mutex variable for exchusive use of
shared resource A, A_free s a condition variable
for resource A to bacome free.

Implementation of critical region

Design issues In threads

- Thread semantics

- Thread creation, termination

- Thread synchronization

- Thread scheduling

Threads scheduling

- Another important issue in designing threads package Is to

decide an appropriate scheduling algorithm.

- The Threads packages provide application programmer with

calls to specify scheduling policy to be used for application

execution .

THreaﬁs scHeau‘lng

policies/algorithms

- Priority assignment facility

- Choice of dynamic variation of quantum size
- Handoff scheduling scheme

- Affinity scheduling scheme

- Signals used for providing interrupts and exceptions

Implementing thread package

- Typically any OS divides memory into users and

kernel space to store programs and data .

- Thread package can be implemented either in

= usSer space

- kernel space .

Implementing thread package

- User level approach
Kernel level approach

Processes and their threads
! User
Runtime system maintains
threads status info Processes and their threads
Kemel maintains Kernel
process status info space

Comparison of thread implementation-1

User- level vs. kernel-level thread implementation

Criteria User-level approach Kernel-level approach

Thread package |Can be implemented even on the OS which | Can be implemented only in the OS
implementation |[does not support threads. which supports threads because it
needs to be integrated into the

kernel design.
Flexibility to use |Users can design the algorithms which suit Users can only specify priorities for

customized sche- | the application because of the use of two- selecting a new thread because

duling algorithms | level scheduling. only one-level scheduling is used.

Context Faster because it is managed by the runtime | Slower because the trap has to be

switching system. made to the kernel.

Scalability Scalable since the status information Poorly scalable because this status
table is maintained by the runtime information table is maintained by

system. the kernel.

Comparison of thread implementation-2

Blocking If a thread makes a blocking system call, all | Easy to implement if & thread
system call threads of the process will be trapped. The | makes a blocking system call.

implementation | kernel schedules another process to run, the | The sequence of operations are:

objective of the thread will be lost. The solution| « Thread makes a call
15 t0 use a jacket routine; extra code before | » Trap to kemel

a blocking system call. It checks if the call | « Thread is suspended
causes a trap to the kemel. Call is allowed to | « Kernel starts a new thread

be made if it is safe; else the thread is
suspended. The entire operation is done

atomically.

Threads and Remote execution
There are two different ways of remote execution of thread

- RPC : distributed systems commonly use RPC (remote procedure call).
- RMI (remote method invocation) and Java threads

P et thon

using threads
Calling threads of Threads created Threads ¢reated
another process on for RPC, on-the-fiy based
the same machine discarded later on RPC requests

Types of RPC execution in distributed system

