- Course: MCA
- Semester: IV
- Paper Code/Name: DSE4T2 (Introduction to Machine Learning)
- Topic: Principal Component Analysis (PCA)
- Faculty Name: Dr. Tapan Kant
- Email: tapan.kant@gmail.com

Principal Component Analysis (PCA)

- Proposed by Karl Pearson, 1901
- Find projections that capture the largest amount of variation in data
- Project data in the directions of maximum variance
- Find the principal vectors from the data
- PCA finds the most accurate data representation in a lower dimensional space

The problem

- Many modern data domains involve huge number of features / dimensions
 - Documents: thousands of words, millions of bigrams
 - Images: thousands to millions of pixels
 - Genomics: thousands of genes, millions of DNA polymorphisms

The problem contd...

- High dimensionality data has many costs
 - Redundant and irrelevant features degrade performance of some ML algorithms
 - Difficulty in interpretation and visualization
 - Computation may become infeasible (e.g. O(n3))
 - Curse of dimensionality

Data Compression

٠

10 V

Data Compression

10000 -> 1000

Reduce data from 3D to 2D

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error. Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

How to perform PCA

PCA Example – Data

Original data

x	У
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

- Subtract the mean
- from each of the data dimensions. All the x values have average (x) subtracted and y values have average (y) subtracted from them. This produces a data set whose mean is zero.
- Subtracting the mean makes variance and covariance calculation easier by simplifying their equations. The variance and co-variance values are not affected by the mean value.

Zero-mean data

0.69	0.49
-1.31	-1.21
0.39	0.99
0.09	0.29
1.29	1.09
0.49	0.79
0.19	-0.31
-0.81	-0.81
-0.31	-0.31
-0.71	-1.01

Calculate the covariance matrix

 since the non-diagonal elements in this covariance matrix are positive, we should expect that both the x and y variable increase together.

Calculate the eigenvectors and eigenvalues of the covariance matrix

eigenvalue indicates the percentage of transformation present along a particular direction

eigenvalues = (.0490833989 1.28402771

Eigenvector of a linear transformation is a non-zero vector that changes at most by the scalar factor when that linear transformation is applied to it.

eigenvectors = (-.735178656 -.677873399 .677873399 -.735178656

Det'n Let A be an nxn matrix. A scalar 2 is called an eigenvalue of A if there is a nonzero vector X such that AX= 2x. Such a vector X is called an eigenvector of A corresponding to X.

Show that
$$\bar{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is an eigenvector of $A = \begin{pmatrix} 3 & 2 \\ 3 & -2 \end{pmatrix}$ corresponding to $\lambda = 4$

- Practical issue: covariance matrix is n x n.
 - E.g. for image data Σ = 32768 x 32768.
 - Finding eigenvectors of such a matrix is slow.

- Singular value decomposition (SVD) to the rescue!
 - Can be used to compute principal components.
 - Efficient implementations available, e.g. MATLAB svd.

- Create mean-centered data matrix X.
- Solve SVD: X = U·S·V^T.
- Columns of V are the eigenvectors of Σ sorted from largest to smallest eigenvalues.
- Select the first k columns as our k principal components.

Conclusion

- Many modern data domains involve huge number of features
- Irrelevant features degrade performance of some ML algorithms
- Difficulty in interpretation and visualization
- Data Compression
- PCA finds the most accurate data representation in a lower dimensional space

Thank you