- Course: MCA
- Semester: IV
- Paper Code/Name: DSE4T2 (Introduction to Machine Learning)
- Topic: Naïve Bayes Algorithm
- Faculty Name: Dr. Tapan Kant
- Email: tapan.kant@gmail.com

Bayes Theorem

- P (h) = prior probability of hypothesis h
- P (D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Roles of Bayesian Method

- Provides practical learning algorithms:
 - Naive Bayes learning
 - Bayesian belief network learning
 - Combine prior knowledge (prior probabilities) with observed data
 - Requires prior probabilities
- Provides useful conceptual framework
 - Provides \gold standard" for evaluating other learning algorithms
 - Additional insight into Occam's razor

What is Naïve Bayes Classifier?

- It is a statistical classification technique based on Bayes Theorem
- A simplest supervised learning algorithms
- It is fast, accurate and reliable algorithm
- It has high accuracy and speed on large datasets.
- Application Spam filtering, text classification, sentiment analysis and recommender system.

- It assumes that the effect of a particular feature in a class is independent of other features
- Loan Applicant income, previous loan history, transaction history, age, location, etc.
- This assumption is called class conditional independence

Naive Bayes Algorithm

Naive_Bayes_Learn(examples)

For each target value v_j

 $\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$

For each attribute value a_i of each attribute a $\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$

Classify_New_Instance(x) $v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \underset{a_i \in x}{\Pi} \hat{P}(a_i | v_j)$

Example

Car No.	Color	Type	Oxigin	Stolen	Coloa
1234567890	Red Red Red Yellow Yellow Yellow Yellow Yellow Red Red	Sports Sports Sports Sports SOU SOU SOU SOU SOU SOU	Dom. Dom. Dom. Dom. Tmp. Tmp. Tmp. Tmp. Tmp.	Yes No Yes No Yes Yes Yes No Yes .	$\frac{P(\text{Red} \text{Yes}) = 3/5}{P(\text{Red} \text{NO}) = 2/5}$ $\frac{P(\text{Red} \text{Yes}) = 3/5}{P(\text{Yellow} \text{NO}) = 3/5}$ $\frac{P(\text{Yellow} \text{Yes}) = 3/5}{P(\text{Suv} \text{Yes}) = 3/5}$ $\frac{P(\text{Suv} \text{Yes}) = 3/5}{P(\text{Suv} \text{Yes}) = 3/5}$ $\frac{P(\text{Suv} \text{Yes}) = 3/5}{P(\text{Suv} \text{NO}) = 3/5}$ $\frac{P(\text{Sports} \text{Yes}) = 3/5}{P(\text{Sports} \text{Yes}) = 3/5}$ $\frac{P(\text{Suv} \text{Yes}) = 3/5}{P(\text{Sports} \text{Yes}) = 3/5}$ $\frac{P(\text{Sports} \text{Yes}) = 3/5}{P(\text{Sports} \text{Yes}) = 3/5}$ $\frac{P(\text{Suv} \text{Yes}) = 3/5}{P(\text{Sports} \text{Yes}) = 3/5}$
	P(Yes) 5/10				P(imp/yes)=3/5 P(Imp/NO)=2/5

P(NO)

5/10

Sample
$$X = \angle \text{Red}, \text{SUV}, \text{Dormestic} >$$

 $P(X | Yes) \cdot P(Yes) = P(\text{Red} | Yes) \cdot P(\text{SUV} | Yes)$
 $\cdot P(\text{Dorm} | Yes) \cdot P(Yes)$
 $P(X | No) \cdot P(No) = P(\text{Red} | No) \cdot P(\text{SUV} | No)$
 $P(\text{Dorm} | No) \cdot P(No)$

Sample X = 2 Red, SUV, Domestic > P(X Yes) P(Yes) = P(Red Yes) · P(SUV Xes) · P(Dorm | Yes) · P (Yes) = 3/5 .1/5 . 2/5 $P(x|n_0) \cdot P(n_0) = P(Red|n_0) \cdot P(suv|n_0)$ $P(Dorm|n_0) \cdot P(n_0)$ 2/5 3/5 3/5

Sample X = 2 Red, SUV, Dormestic > P(X Yes) · P(Yes) = P(Red Yes) · P(SUV Yes) · P(Dorm | Yes) · P (Yes) = 3/5 1/5 - 2/5 = 0.024 P(x(No). P(NO) = P(Red | NO) . P(SUV | NO) P (Dom/ 100) P(00) 2/5 3/5 3/5 = 0.072

Thank you