
Interface, Package & Wrapper Classes

1

MCA Sem II

Paper Code-CS2T05

(Object Oriented Programming)

-- Dr. Bhawna Sinha

Department of MCA,

PWC

bhawna.sahay2004@gmail.com

Interfaces

• Interfaces is a collection of methods which are public
and abstract by default.

• The implementing objects have to inherit the
interface and provide implementation for all these
methods.

• multiple inheritance in Java is allowed through
interfaces

• Interfaces are declared with help of a keyword
interface

Syntax for Creating Interface

interface interfacename

{

returntype methodname(argumentlist);

…

}

The class can inherit interfaces using implements
keyword

– class classname implements interfacename{}

Interface Example

interface Calculator {

int add(int a,int b);

int subtract(int a,int b);

int multiply(int a,int b);

int divide(int a,int b);

}

Example (contd.)

class Normal_Calculator implements Calculator
{
public int add(int a,int b){

return a+b;}
public int subtract(int a,int b){

return a-b;}
public int multiply(int a,int b){

return a*b;}
public int divide(int a,int b){

return a/b;}
public static void main(String args[]){
Normal_Calculator c=new Normal_Calculator();
System.out.println(“Value after addition = “+c.add(5,2));
System.out.println(“Value after Subtraction = “+c.subtract(5,2));
System.out.println(“Value after Multiplication = “+c.multiply(5,2));
System.out.println(“Value after division = “+c.divide(5,2)); }}

The Output

Value after addition = 7

Value after Subtraction = 3

Value after Multiplication= 10

Value after division = 2

Variables in Interface

• They are implicitly public, final, and static

• As they are final, they need to be assigned a
value compulsorily.

• Being static, they can be accessed directly
with the help of an interface name

• as they are public we can access them from
anywhere.

Extending Interfaces

• One interface can inherit another interface
using the extends keyword and not the
implements keyword.

• For example,

interface A extends B { }

Interface Vs Abstract class

Similarities Between Interface and
abstract class

• Both cannot be instantiated, i.e. objects cannot be
created for both of them.

• Both can have reference variables referring to their
implementing classes objects.

• Interfaces can be extended, i.e. one interface can
inherit another interface, similar to that of abstract
classes (using extends keyword).

• static / final methods can neither be created in an
interface nor can they be used with abstract
methods.

Packages

• collection of classes and interfaces
• provides a unique namespace for the classes.
• declaration resides at the top of a Java source

file.
• A package can contain the following.

– Classes
– Interfaces
– Enumerated types
– Annotations

Example

package packexample;

public class ClassinPackage {

}

• if you want to create sub-packages

– package rootPackage.subPackage1;

Package (contd.)

• Class that reside inside a package cannot be referred
by their own name alone.

• The package name has to precede the name of the
class of which it is a part of.

• All classes are part of some or the other package.

• If the package keyword is not used in any class for
mentioning the name of the package, then it
becomes part of the default/unnamed package.

Compiling and executing packages

• compiling the class

– javac ClassinPackage.java

• executing the class

– Class path needs to be set

– Set CLASSPATH=%CLASSPATH%;c:\pack;

– java packexample.ClassinPackage

– Considering pack is the parent directory of
packexample

Using Packages

• Import keyword is used to import classes from a
packages.

• Any number of import statements can be given.

• To import a single class

– import java.awt.Rectangle;

• To import all classes in a package

– import java.awt.*;

• To import all the static members of the class

– import static pkgName.ClassName.*;

Access Protection

Four Access specifier in Java

Access Specifier (contd.)

• public means accessibility for all

• private means accessibility from within the class only.

• default (blank) access specifiers are accessible only
from within the package

• protected means accessibility outside the packages
but only to subclasses.

Access Specifier Example

Suppose x & y are package

A is a public class within package x

B is another class within package x

C is subclass of A in package x

D is subclass of A within package y

E is class within package y

abc() is a method with default access in class A

xyz() is a method with protected access specifier in class A

pqr() is a method with public access specifier in class A

Access protection

Access Protection (contd.)

• method abc() is accessible from A, B as well as
C, but neither from D nor E.

• protected method are accessible outside the
package also, but only to subclasses outside
the package. For example, the method xyz()
accessible from classes A, B, C, D, but not from
E.

• public method pqr() is accessable from all
classes A, B, C, D and E

Your Turn

• Differentiate between interface and abstract
class?

• What is the significance of classpath in
packages?

• What is static import?

• What are various access specifier in java?

java.lang package

• java.lang is a imported by default in all the
classes that we create.

• Remember String and System class

Java.lang.Object class

• parent by default of all the classes (predefined
and user-defined) in Java.

• The methods of Object class can be used by all
the objects and arrays.

• toString() and equals() are methods of Object
class

toString() method
class Demo {

public String toString() {

return “My Demo Object created”;

}

public static void main(String args[]) {

System.out.println(new Demo()); }}

Output

My Demo Object created

Java Wrapper classes
• For each primitive type, there is a corresponding

wrapper class designed.
• Are wrapper around primitive data types.
• allow for situations where primitives cannot be used

but their corresponding objects are required.
• Normally Used to convert a numeric value to a String

or vice-versa.

• Just like String, Wrapper objects are also
immutable

Wrappers classes

Wrapper classes (contd.)

• converts primitive to wrapper

– double a = 4.3;

– Double wrp = new Double(a);

• Each wrapper provides a method to return the
primitive value.

– double r = wrp.doubleValue();

Converting Primitive types to wrapper
objects

• Integer ValueOfInt = new Integer(v)

• Float ValueOfFloat = new Float(x)

• Double ValOfDouble = new Double(y)

• Long ValueOfLong = new Long(z)

Converting wrapper objects to primitives

• int v = ValueOfInt.intValue();

• float x = ValueOfFloat.floatValue();

• long y = ValueOfLong.longValue();

• double z = ValueOfDouble.doubleValue();

Converting primitives to String Object

• String xyz = Integer.toString()

• String xyz = Float.toString()

• String xyz = Double.toString()

• String xyz = Long.toString()

Converting back from String Object to
Primitives

• int v = Integer.parseInt(xyz)

• long y = Long.parseLong(xyz)

• public float parseFloat(String x)

• public double parseDouble(String x)

• public double parseByte(String x)

• public double parseShort(String x)

• May throw NumberFormatException if the value of
the String does not represent a proper numbers

Converting Primitives represented by
String to wrapper

• Double ValueOfDouble = Double.valueOf(xyz);

• Float ValueOfFloat = Float.valueOf(xyz);

• Integer ValueOfInteger = Integer.valueOf(xyz);

• Long ValueOfLong = Long.valueOf(xyz);

• Double ValueOfDouble = Double.valueOf(xyz);

• Float ValueOfFloat = Float.valueOf(xyz);

• Integer ValueOfInteger = Integer.valueOf(xyz);

• Long ValueOfLong = Long.valueOf(xyz);
– String argument method generates a

NumberFormatException in case the value in a String does
not contain a number.

Autoboxing and Unboxing

• Introduced in Java 5

• conversion from primitives to wrappers is known as
boxing, while the reverse is known as unboxing.

• Integer wrap_int = 5;

– primitive 5 autoboxed into an Integer

• int prim_int = wrap_int;

– automatic unboxing Integer into int

String class

• are basically immutable objects in Java.

• Immutable means once created the, strings cannot
be changed.

• Whenever we create strings, it is this class that is
instantiated.

• In Java strings can be instantiated in two ways:

– String x= “String Literal Object”;

– String y=new String (“String object is created here”);

String Example

String a=”Hello”; String b=”Hello”;
String c=new String(“Hello”);
String d=new String(“Hello”);
String e=new String(“Hello, how are you?”);
if(a==b)

System.out.println(“object is same and is being shared by
a & b”);
else

System.out.println(“Different objects”);
if(a==c)

System.out.println(“object is same and is being shared by
a & c”);
else

System.out.println(“Different objects”);

String Example

if(c==d)
System.out.println(“same object”);

else
System.out.println(“Different objects”);

String f=e.intern();
if(f==a)
System.out.println(“Interned object f refer to the already
created object a in the pool”);
else
System.out.println(“Interned object does not refer to the
already created objects, as literal was not present in the pool.
It is a new object which has been created in the pool”);

• we have omitted the class and the main method declaration from this example. You need to
add it to run the example (refer Book for complete program).

The Output

object is same and is being shared by a & b

Different objects

Different objects

Interned object does not refer to the already created
objects, as literal was not present in the pool. It is a
new object which has been created in the pool

String Manipulation

• Strings in Java are immutable (read only) in nature,
Once defined cannot be changed.

• Let us take an example:
– String x = “Hello”; // ok
– String x = x +”World”; // ok, but how?

• the ‘+’ operator concatenates If at least one of the
operand is a string.

• The second statement gets converted to the
following statement automatically
– String x=new StringBuffer(). append(x). append(“World”).

toString();

Common methods of the String class

Methods of String class

StringBuffer class
• StringBuffer class is used for representing changing

strings.
• StringBuffer offers more performance enhancement

whenever we change Strings, because it is this class
that is actually used behind the curtain.

• Just like any other buffer, StringBuffer also has a
capacity and if the capacity is exceeded, then it is
automatically made larger.

• The initial capacity of StringBuffer can be known by
using a method capacity().

Methods of StringBuffer class

StringBuilder class
• introduced in Java 5
• a substitute of StringBuffer class.
• This class is faster than StringBuffer class, as it is not

synchronized
• append(), insert(), delete(), deleteCharAt(), replace(),

and reverse() return StringBuilder objects rather than
StringBuffer objects.

• The line creates a StringBuilder object.
– StringBuilder s=new StringBuilder();
– construct a StringBuilder object with an initial capacity of

16 characters. Similar to that of StringBuffer.

Splitting Strings
• StringTokenizer is a utility class provided by the

java.util package.

• Now a legacy code.

• This class used to be of utmost importance when we
want to divide the entire String into parts (Tokens) on
the basis of delimiters.

• The delimiters can be any of the whitespace, tab
space, semicolon, comma, etc.

• J2SE 1.4 added split() method to the String class for
simplifying the task of splitting a String and also
added Pattern and Matcher classes in java.util.regex
package.

Example

import java.util.*; import java.util.regex.*;
class StringTokenizerDemo {
public static void main(String args[]) {
int i=1;
String str=”Never look down on anybody unless you’re helping him up”;
System.out.println(“Splitting String Using StringTokenizer class”);
StringTokenizer tr=new StringTokenizer(str,” “);
while (tr.hasMoreTokens()) {

System.out.print(“Token “+i+” :”);
System.out.println(tr.nextToken());
++i; }

System.out.println(“Splitting String Using split() method”);
String[] tk=str.split(“ “);
for(String tokens: tk)

System.out.println(tokens);
Pattern p=Pattern.compile(“ “);
tk= p.split(str,3);
for(String tokens: tk)

System.out.println(tokens); }}

Enum Type

• is a kind of class definition.
• Subclass of Object class and inherits the Comparable interface
• Defines the type along with the possible set of enum values

which are listed in the curly braces, separated by commas
• All enum types are subclasses of the java.lang.Enum class.
• Each value in an enum is an identifier.
• The following statement declares a type, named Games, with

the values CRICKET, FOOTBALL, TENNIS, and BASKETBALL.
– enum Games { CRICKET, FOOTBALL, TENNIS, BASKETBALL };

• By convention, all names must be in upper case.

Enum (contd.)

• Once a type is defined, you can declare a variable of
that type:
– Games G;

– G can hold one of the values defined in the enumerated
type Games or null, but nothing else.

– An attempt to assign a value other than the enumerated
values or null will result in a compilation error.

– The enumerated values can be accessed using the syntax.
• enumeratedTypeName.valueName

• G = Games.TENNIS;

Enum Example
public class EnumDemo {
static enum Games {CRICKET, FOOTBALL, CHESS, BASKETBALL,
TENNIS,BADMINTON};
public static void main (String[] args) {
Games G1 = Games.CHESS;
Games G2 = Games.TENNIS;
System.out.println(“First game is “ +G1.name());
System.out.println(“Second game is “ +G2.name());
System.out.println(“First game’s ordinal is “ +G1. ordinal());
System.out.println(“Second game’s ordinal is “ +G2.ordinal());
System.out.println(“G1.equals(G2) returns “ +G1. equals(G2));
System.out.println(“G1.toString() returns “ +G1. toString());
System.out.println(“G1.compareTo(G2) returns
“+G1.compareTo(G2)); }}

The output

First game is CHESS

Second game is TENNIS

First game’s ordinal is 2

second game’s ordinal is 4

G1.equals(G2) returns false

G1.toString() returns Chess

G1.compareTo(G2) returns -2

for Loop with Enumeration

• Each enumerated type has a static method values()
associated with them that returns all enumerated
values for the type in an array.

• For example,

– Games[] G = Games.values();

• You can use for loop to process all the values in the
array.

– for (int i = 0; i < G.length; i++)

– System.out.println(G[i]);

Conditional Statements with
Enumeration

• can use if or switch-case with Enumerations to test
the value in the variable, as shown below.

If Statement:
if (G1.equals(Games.CRICKET)) {

// action to be performed
} else if (G1.equals(Games.FOOTBALL)) {

// action to be performed
} else

Conditional Statements with
Enumeration

Switch Statement:

switch (Games) {

case CRICKET: // case CRICKET and not
// Games.CRICKET

// action to be performed;

case FOOTBALL:

// action to be performed;

...

}

Attributes and Methods within
Enumeration

public enum Desc {
CRICKET (“Sachin Tendulkar”), CHESS (“Vishwanathan
Anand”), TENNIS (“Sania Mirza”);
private String description;
private Desc(String description) {
this.description = description; }

public String getDesc() {
System.out.print(“Indian Delight: “);
return description; } }

public class UseDesc {
public static void main(String[] args) {
Desc player = Desc.TENNIS; System.out.println(player.getDesc());
}}

Summary

• Java does not support multiple inheritance among
classes.

• Multiple inheritance can be done using interfaces.
• Classes can be grouped together to form a Package.
• Package is a collection of java files similar to a

directory.
• A fundamental predefined package is discussed in

this chapter: java.lang package.
• For all the primitive data types, wrapper classes are

defined which encapsulate the functionality of the
primitive data types.

Summary

• A few other classes like Object, String, StringBuffer
and StringBuilder class have been discussed, as these
classes are frequently used in programming.

• All classes, whether predefined or user-defined,
inherit ultimately from the Object class implicitly.

• Enum type is a kind of class and is basically useful
when we know the type along with the possible set
of values in that type.

