
Inheritance and

Abstract Classes

1

MCA Sem II

Paper Code-CS2T05

(Object Oriented Programming)

-- Dr. Bhawna Sinha

Department of MCA,

PWC

bhawna.sahay2004@gmail.com

Inheritance
• Is the ability to derive something specific from

something generic.
• aids in the reuse of code.
• A class can inherit the features of another class and

add its own modification.
• The parent class is the super class and the child class

is known as the subclass.
• A subclass inherits all the properties and methods of

the super class.

Inheritance

Types of Inheritance

• Single

• Multiple

• Multilevel

Single level inheritance

Classes have only base class

Multi level
There is no limit to this chain of inheritance (as

shown below) but getting down deeper to four or

five levels makes code excessively complex.

Multiple Inheritance
A class can inherit from more than one unrelated

class

Deriving Classes

• Classes are inherited from other class by declaring
them as a part of its definition

• For e.g.

– class MySubClass extends MySuperClass

• extends keyword declares that MySubClass inherits
the parent class MySuperClass.

Method Overriding
• A method in a subclass has the same name and type

signature as a method in its superclass, then the
method in the subclass is said to override the
method in the superclass.

• It is a feature that supports polymorphism.

• When an overridden method is called through the
subclass object, it will always refer to the version of
the method defined by the subclass.

• The superclass version of the method is hidden.

Method Overriding Example
class A {
int i = 0;
void doOverride (int k) {
i = k; } }
class B extends A {
void doOverride(int k) {
i = 2 * k;
System.out.println(“The value of i is: “+i); }
public static void main (String args[])
{ B b = new B();

b.doOverride(12);
}}

The output

The value of i is: 24

Late binding Vs Early binding
• Binding is connecting a method call to a method

body.

• When binding is performed before the program is
executed, it is called early binding.

• If binding is delayed till runtime it is late binding.

• Also known as dynamic binding or runtime binding.

• All the methods in Java use late binding (except
static and final).

Super Keyword

• For invoking the methods of the super class.

• For accessing the member variables of the
super class.

• For invoking the constructors of the super
class.

Super Keyword (contd.)
class A {
void show()
{ System.out.println(“Super Class show method”);
} }
class B extends A
void show()
{ System.out.println(“Subclass show method”); }
public static void main (String args[]) {

A s1=new A();
s1.show();
B s2=new B ();
s2.show();

}}

Problem and Solution

• Two methods being called by two different
objects (inherited), instead the job can be
done by one object only, i.e. using super
keyword.

Case 1: Invoking Methods using super
class ANew {
void show()
{ System.out.println(“Super Class show

method”); } }
class BNew extends ANew {
void show()
{

super.show();
System.out.println(“Subclass show method”);

}
public static void main (String args[]) {

BNew s2=new BNew ();
s2.show(); }}

Case 2: Accessing variables using super
class Super_Variable {
int b=30; }
class SuperClass extends Super_Variable {
int b=12;
void show() {
System.out.println(“subclass class variable: “+ b);
System.out.println(“superclass instance variable: “+ super.b);
}
public static void main (String args[]) {
SuperClass s=new SubClass();
s.show(); // call to show method of Sub Class B
}}

The output

• subclass class variable: 12

• superclass instance variable: 30

Case 3: constructors of the super class.

class Constructor_A {
Constructor_A() {
System.out.println(“Constructor A”); }}
class Constructor_B extends Constructor_A {
Constructor_B() {
System.out.println(“Constructor B”); }}
class Constructor_C extends Constructor_B {
Constructor_C() {
System.out.println(“Constructor C”); }
public static void main (String args[]) {
Constructor_C a=new Constructor_C();
}}

The Output

Constructor A

Constructor B

Constructor C

Case 3: (contd.)

class Constructor_A_Revised {
Constructor_A_Revised()
{

System.out.println(“Constructor A Revised”);
}}
class Constructor_B_Revised extends Constructor_A_Revised {
/*Constructor_B_Revised()
{

System.out.println(“Constructor B”);
}*/
Constructor_B_Revised(int a) {

a++;
System.out.println(“Constructor B Revised “+ a); }}
class Constructor_C_Revised extends Constructor_B_Revised {
Constructor_C_Revised() {

super(11); // if omitted compile time error results
System.out.println(“Constructor C Revised”); }

public static void main (String args[]) {
Constructor_C_Revised a=new Constructor_C_Revised();
}}

The Output

Constructor A Revised

Constructor B Revised 12

Constructor C Revised

final keyword
• Declaring constants (used with variable and

argument declaration)
– final int MAX=100;

• Disallowing method overriding (used with method
declaration)
– final void show (final int x)

• Disallowing inheritance (used with class declaration).
– final class Demo {}

Abstract class
• Abstract classes are classes with a generic concept, not

related to a specific class.
• Abstract classes define partial behaviour and leave the

rest for the subclasses to provide.
• contain one or more abstract methods.
• abstract method contains no implementation, i.e. no

body.
• Abstract classes cannot be instantiated, but they can

have reference variable.
• If the subclasses does not override the abstract methods

of the abstract class, then it is mandatory for the
subclasses to tag itself as abstract.

Why create abstract methods?

• to force same name and signature pattern in all the
subclasses

• subclasses should not use their own naming patterns
• They should have the flexibility to code these

methods with their own specific requirements.

Example of Abstract class
abstract class Animal
{

String name;
String species;
Animal(String n, String s)
{

name=n;
species=s;

}
void eat(String fooditem)
{
System.out.println(species +” “+ name + “likes to have “+
fooditem);
}
abstract void sound();

}

Summary

• The concept of Inheritance is derived from real life.
• The properties and methods of a parent class are inherited by

the children or subclasses.
• Subclasses can provide new implementation of method using

method overriding, keeping the method names and
signatures same as that of the parent class.

• The super keyword can be used to access the overridden
methods, variables and even the constructors of the super
class.

• Abstract classes are used to force the subclasses to override
abstract methods and provide body and code for them.

• The final keyword is used to create constants and disallow
inheritance.

