
Patna Women’s College

MCA Department

Semester II

MCA CS2T07 Automata Theory Notes

Formal language

The alphabet of a formal language is the set of symbols, letters, or tokens from which the strings of the language may be formed;

frequently it is required to be finite. The strings formed from this alphabet are called words, and the words that belong to a

particular formal language are sometimes called well-formed words or well-formed formulas. A formal language is often defined

by means of a formal grammar such as a regular grammar or context-free grammar, also called its formation rule.

The field of formal language theory studies the purely syntactical aspects of such languages— that is, their internal structural

patterns. Formal language theory sprang out of linguistics, as a way of understanding the syntactic regularities of natural

languages. In computer science, formal languages are often used as the basis for defining programming languages and other

systems in which the words of the language are associated with particular meanings or semantics.

A formal language L over an alphabet Σ is a subset of Σ*, that is, a set of words over that alphabet.

In computer science and mathematics, which do not usually deal with natural languages, the adjective "formal" is often omitted as

redundant.

While formal language theory usually concerns itself with formal languages that are described by some syntactical rules, the actual

definition of the concept "formal language" is only as above: a (possibly infinite) set of finite-length strings, no more nor less. In

practice, there are many languages that can be described by rules, such as regular languages or context-free languages.

The notion of a formal grammar may be closer to the intuitive concept of a "language," one described by syntactic rules.

Formal language

A formal grammar (sometimes simply called a grammar) is a set of formation rules for strings in a formal language. The rules

describe how to form strings from the language's alphabet that are

valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them

in whatever context—only their form.

A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which rewriting must start. Therefore, a

grammar is usually thought of as a language generator.

However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given

string belongs to the language or is grammatically incorrect. To describe such recognizers, formal language theory uses separate

formalisms, known as automata theory. One of the interesting results of automata theory is that it is not possible to design a

recognizer for certain formal languages.

Alphabet

An alphabet, in the context of formal languages, can be any set, although it often makes sense to use an alphabet in the usual sense

of the word, or more generally a character set such as ASCII. Alphabets can also be infinite; e.g. first-order logic is often

expressed using an alphabet which, besides symbols such as^, ¬, □ and parentheses, contains infinitely many elements x0, x1, x2,

… that play the role of variables. The elements of an alphabet are called its letters.

word

A word over an alphabet can be any finite sequence, or string, of letters. The set of all words over an alphabet Σ is usually

denoted by Σ* (using the Kleene star). For any alphabet there is only one word of length 0, the empty word, which is often

denoted by e, ε or λ. By concatenation one can combine two words to form a new word, whose length is the sum of the lengths of

the original words. The result of concatenating a word with the empty word is the original word.

Operations on languages

Certain operations on languages are common. This includes the standard set operations, such as union, intersection, and

complement. Another class of operation is the element-wise application of string operations.

Examples: suppose L1 and L2 are languages over some common alphabet.

The concatenation L1L2 consists of all strings of the form vw where v is a string from L1 and w is a

string from L2.

The intersection L1 ∩ L2 of L1 and L2 consists of all strings which are contained in both languages

The complement ¬L of a language with respect to a given alphabet consists of all strings over the

alphabet that are not in the language.

The Kleene star: the language consisting of all words that are concatenations of 0 or more words in the

original language;

Reversal:

Let e be the empty word, then eR = e, and

for each non-empty word w = x1…xn over some alphabet, let wR = xn…x1,

then for a formal language L, LR = {wR | w □ L}.

String homomorphism

Such string operations are used to investigate closure properties of classes of languages. A class of

languages is closed under a particular operation when the operation, applied to languages in the class,

always produces a language in the same class again. For instance, the context-free languages are known to

be closed under union, concatenation, and intersection with regular languages, but not closed under

intersection or complement. The theory of trios and abstract families of languages studies the most

common closure properties of language families in their own right.

Language

“A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols.

References:

https://www.geeksforgeeks.org/chomsky-hierarchy-in-theory-of-computation/?ref=lbp

https://www.geeksforgeeks.org/regular-expressions-regular-grammar-and-regular-languages/

https://www.youtube.com/watch?v=eqCkkC9A0Q4&list=PLEbnTDJUr_IdM___FmDFBJBz0zCsOFxfK

REFERENCE BOOKS

Hopcroft, Ullman “ Theory of Computation & Formal Languages”, TMH.

FORMAL LANGUAGES AND AUTOMATA THEORY, H S Behera, Janmenjoy Nayak , Hadibandhu

Pattnayak, Vikash Publishing, New Delhi.

Anand Sharma, “Theory of Automata and Formal Languages”, Laxmi Publisher

Faculty:

Hera Shaheen

Assistant Professor

MCA Department

Patna Women’s College

https://www.geeksforgeeks.org/chomsky-hierarchy-in-theory-of-computation/?ref=lbp
https://www.geeksforgeeks.org/regular-expressions-regular-grammar-and-regular-languages/
https://www.youtube.com/watch?v=eqCkkC9A0Q4&list=PLEbnTDJUr_IdM___FmDFBJBz0zCsOFxfK

