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Formal language 

 

The alphabet of a formal language is the set of symbols, letters, or tokens from which the strings of the language may be formed; 

frequently it is required to be finite. The strings formed from this alphabet are called words, and the words that belong to a 

particular formal language are  sometimes called well-formed words or well-formed formulas. A formal language is often   defined 

by means of a formal grammar such as a regular grammar or context-free grammar, also called its formation rule. 

 

The field of formal language theory studies the purely syntactical aspects of such languages— that is, their internal structural 

patterns. Formal language theory sprang out of linguistics, as a way of understanding the syntactic regularities of natural 

languages. In computer science, formal languages are often used as the basis for defining programming languages and other 

systems in which the words of the language are associated with particular meanings or semantics. 

 

A formal language L over an alphabet Σ is a subset of Σ*, that is, a set of words over that alphabet. 

 

In computer science and mathematics, which do not usually deal with natural languages, the adjective "formal" is often omitted as 

redundant. 

 

While formal language theory usually concerns itself with formal languages that are described by some syntactical rules, the actual 

definition of the concept "formal language" is only as above: a (possibly infinite) set of finite-length strings, no more nor less. In 

practice, there are many languages that can be described by rules, such as regular languages or context-free languages. 

The notion of a formal grammar may be closer to the intuitive concept of a "language," one described by syntactic rules. 

 

Formal language 

 

A formal grammar (sometimes simply called a grammar) is a set of formation rules for strings in a formal language. The rules 

describe how to form strings from the language's alphabet that are 



 

 

valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them 

in whatever context—only their form. 

 

A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which rewriting must start. Therefore, a 

grammar is usually thought of as a language generator. 

However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given 

string belongs to the language or is grammatically incorrect. To describe such recognizers, formal language theory uses separate 

formalisms, known as automata theory. One of the interesting results of automata theory is that it is not possible to design a 

recognizer for certain formal languages. 

 

 

 

Alphabet 

 

An alphabet, in the context of formal languages, can be any set, although it often makes sense to use an alphabet in the usual sense 

of the word, or more generally a character set such as ASCII. Alphabets can also be infinite; e.g. first-order logic is often 

expressed using an alphabet which, besides symbols such as^, ¬, □ and parentheses, contains infinitely many elements x0, x1, x2, 

… that play the role of variables. The elements of an alphabet are called its letters. 

word 

 

A word over an alphabet can be any finite sequence, or string, of letters. The set of all words   over an alphabet Σ is usually 

denoted by Σ* (using the Kleene star). For any alphabet there is  only one word of length 0, the empty word, which is often 

denoted by e, ε or λ. By concatenation one can combine two words to form a new word, whose length is the sum of the lengths of 

the original words. The result of concatenating a word with the empty word is the original word. 

Operations on languages 

 

Certain operations on languages are common. This includes the standard set operations, such as union, intersection, and 

complement. Another class of operation is the element-wise application of string operations. 



 

 

Examples: suppose L1 and L2 are languages over some common alphabet. 

 

The concatenation L1L2 consists of all strings of the form vw where v is a string from L1 and w is a 

string from L2. 

The intersection L1 ∩ L2 of L1 and L2 consists of all strings which are contained in both languages 

The complement ¬L of a language with respect to a given alphabet consists of all strings over the 

alphabet that are not in the language. 

The Kleene star: the language consisting of all words that are concatenations of 0 or more words in the 

original language; 

Reversal: 

Let e be the empty word, then eR = e, and 

for each non-empty word w = x1…xn over some alphabet, let wR = xn…x1, 

then for a formal language L, LR = {wR | w □ L}. 

String homomorphism 

 

Such string operations are used to investigate closure properties of classes of languages. A class of 

languages is closed under a particular operation when the operation, applied to languages in the class, 

always produces a language in the same class again. For instance, the context-free languages are known to 

be closed under union, concatenation, and intersection with regular languages, but not closed under 

intersection or complement. The theory of trios and abstract families of languages studies the most 

common closure properties of language families in their own right. 

Language 

 

“A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols. 
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