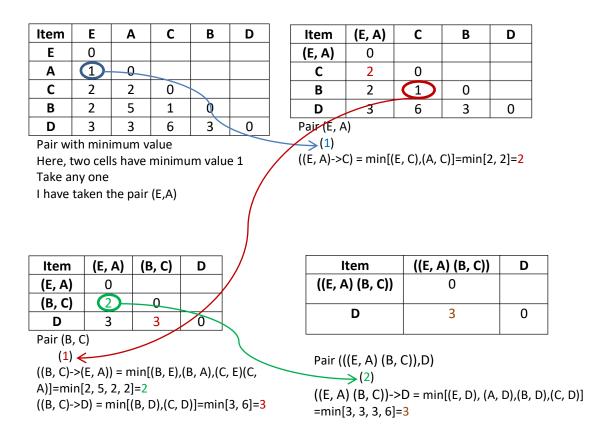
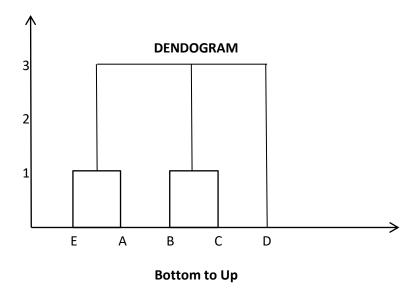

BRAJ KISHOR PRASAD, Department of MCA, 4th Semester MCA DSE4T2: *Introduction to Machine Learning*

Agglomerative Clustering


Question: Perform Agglomerative Algorithm on the following data and plot a dendogram using single link approach. The given data indicates the distance between elements.

Item	E	Α	С	В	D
E	0	1	2	2	3
Α	1	0	2	5	3
С	2	2	0	1	6
В	2	5	1	0	3
D	3	3	6	3	0


Proximity Matrix with Original Data

Item	Ε	Α	С	В	D		
E	0						
Α	1	0					
С	2	2	0				
В	2	5	1	0			
D	3	3	6	3	0		
Proximity Matrix							

After ignoring the data above diagonal

Dendogram: A tree like diagram that records the sequences of merges or splits. Merge is used in Agglomerative clustering and Split is used in Divisive Clustering. Agglomerative clustering is Bottom-Up while Divisive clustering is Top-Down.

In this example, I have taken minimum distance between two elements. Also, there are other options available. They are:

- 1. MIN
- 2. MAX
- 3. Group AVERAGE
- 4. Distance between Centroids etc.

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - ✓ Different approaches to defining the distance between clusters distinguish the different algorithms

Summery

- Agglomerative clustering
 - $\rightarrow~$ Choose a cluster distance / dissimilarity scoring method
 - $\rightarrow~$ Successively merge closest pair clusters
 - $\rightarrow~$ "Dendrogram" shows sequence of merge & distances
 - \rightarrow Complexity: O(m² log m)
- "Clustering for understanding data matrix
 - → Build clusters on rows (data) and columns (features)
 - $\rightarrow~$ Reorder data & features to expose behavior across groups
- Agglomerative clusters depend on dissimilarity
 - $\rightarrow~$ Choice determines characteristics of "found" clusters