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Abstract: The term Machine Learning was invented by
Arthur Samuel in 1959, an American pioneer within the
field of “Computer Gaming” & “Al” and he said that “it
gives computers the power to be told without being
explicitly programmed.” it's the most growing technical
field, lying at the intersection of computing and statistics,
and the core of computer science and data science. The
adoption of data-intensive machine-learning methods
will be found throughout science, technology, and
commerce, resulting in more evidence-based decision-
making across many walks of life, including health care,
manufacturing, education, financial modeling, policing,
and marketing. The power of machine learning
algorithms to be told from the current context and
generalized into unseen tasks would improve the
protection and efficacy of radiotherapy practice,
resulting in better outcomes.

Effective prediction of toxicity and testing schemes is
essential to limit the side effects associated with
radiotherapy (RT). In recent years, a growing interest in

mechanical engineering (ML) in the scientific
community has led to the use of new tools in RT. Several
researchers have shown the high efficacy of ML-based
models in predicting toxicity. However, the use of these
methods in clinics is still delayed, in part due to their low
interpretation. Therefore, a review of modern research is
needed to familiarize physicians with standard methods
and techniques. Here, we present a study of ML-based
models for predicting and differentiating RT-induced
complications from methodological and clinical
perspectives, focusing on the type of hypotheses, ML
methods used, and the main results obtained. An
overview of our work published research in many areas
of cancer, including brain, breast, throat, gynecology,
head and neck, liver, lung, and prostate cancer. The
purpose is to describe the current state of the art and the
key achievements within the field for both researchers
and physicians.
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Introduction:

It is estimated that about half the world's cancer
patients are eligible for radiotherapy (RT), either for
therapeutic or therapeutic purposes. Sequential end-
generation channels and modern methods, such as
intensity-modulated RT (IMRT), stereotactic body RT
(SBRT), and proton therapy (PT), provide high accuracy.
However, normal tissues close to the target area,
defined as endangered organs (OARs), may also be
affected, resulting in RT-induced toxicity. Short-term or
severe toxicity occurs during treatment or within three
months after its completion, and usually, complete
recovery occurs between weeks to months. In contrast,
recent side effects, such as fibrosis or RT-induced
oncogenesis, are generally considered to be irreversible
and persistent over time. When planning any RT
treatment, its potential benefits should be weighed
against the potential for damage to healthy organs and
tissues. The ultimate goal is to maximize therapeutic
response while minimizing the risk of common tissue
problems. On the other hand, when RT is introduced for
medicinal purposes, targeted coverage should not be
compromised by reaping OAR savings. However, the
various side effects of RT vary in their clinical
significance. Hence, an accurate estimate of the risks is
necessary, especially if alternatives such as surgery or
chemotherapy are available. The physiopathology of
toxicity is not only related to radiation volume but also
depends on genetics and tumor microenvironment.
Therefore, identifying key factors that prioritize a
particular type of toxin can help improve treatment
planning and inform patients and physicians about the
expected tolerance of treatment.

On the other hand, data-driven methods assume
that interactions between radiation and normal tissue
are complex and cannot be adequately represented.
Therefore, such methods are intended to identify the
most appropriate model for input data (also called
attributes or standalone variables) and output data (also
called feedback or dependent variables). Toxicity
predictions can be classified as "dosimetric," directly
related to radiation delivery (ex, dose-volume histogram
(DVH)), "clinical," which includes patient and disease-
related variables (e.g., sex and tumor histology), as well

as “image base” or “radiomic,” which can be extracted
from a variety of medical images (e.g., definition,
variability, and oblique histograms of image stabilization
histograms). These methods can be divided into
traditional mathematical methods, such as regression-
based techniques, artificial intelligence (Al), and
machine learning.

Machine Learning:

Machine learning is a part of Al (artificial
intelligence) data as input to predict new output values.
That allows software applications to become more
accurate at predicting outcomes without being explicitly
programmed. Machine learning algorithms use history.

Machine learning is an integral part of the growing
field of data science. Algorithms are trained to make
categories or predictions through mathematical
methods, revealing essential details within data mining
projects. This information later drives decision-making
within applications and businesses, positively impacting
key growth metrics. As big data continues to grow and
grow, the market demand for data scientists will
increase, requiring them to help identify the most critical
business questions and later the data to answer them.

As big data continues to expand and grow, the
market demand for data scientists will increase,
requiring them to help identify the foremost relevant
business questions and, subsequently, the info to
answer them.

Machine learning is one of the most exciting
technologies that one would have ever come across. As
evident from the name, it gives the computer that makes
it more similar to humans: The ability to learn. Machine
learning is actively used today, perhaps in many more
places than expected. We probably use a learning
algorithm a dozen times without even knowingit.

ML has proven valuable because it can solve
problems at a speed and scale that can't be duplicated
by the human mind alone. With massive amounts of
computational ability behind one task or multiple specific
tasks, machines are often trained to spot patterns in and
relationships between input files and automate routine
processes.
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Machine learning is essential because it gives
enterprises a view of trends in customer behavior and
operational business patterns, similarly supporting the
latest products event. Many of today's leading
companies, like Facebook, Google, and Uber, make
machine learning central to their operations.

Human Machine Interaction: -

As society becomes more and more
knowledgeable, people need a higher level of computer
intelligence. Human-computer interaction (HCI) is not
limited to real hardware-based interactions. Some of the
most intelligent interactions emerge gradually in human
lives, such as a series of brilliant techniques related to
facial recognition, touch recognition, and voice
recognition. Smart programs can help establish
communication between people and computers. These
simple communication channels have become a major
development trend in the HCI sector. The goal of HCI
development is naturally to make computers more
efficient and adaptable to human needs. It focuses on
people rather than forcing people to get used to the
computer.

Obtaining data from HCI enables us to learn more
efficiently and build more intelligent systems. Machine
learning is an essential branch of practical wisdom. It
has made great strides in many fields and demonstrated
vital research and development (R&D) capabilities. With
machine learning technology in HCI, machines are
much more intelligent.

This Special Issue aims to bring together
fundamental research and review articles that discuss
recent developments in human-machine learning based
on machine learning.

Possible Topics Include But Are Not Limited To
The Following:

¢ \oice interaction based on machine learning

e Face recognition and speech based on
emotional networks

¢ In-depth learning models for medical image
reshaping, recovery, and registration

e Touch and movement recognition

e Artificial intelligence for intelligent medical
analysis

e Smart artificial intelligence detection and
diagnostic methods

e Brain-computerinterface

e Analysis of human characteristics in machine
design

ML-Based Models of Toxicity

The theoretical framework for ML-enabled artificial
models was laid down in the 1950s (6). Still, it was not
until recently that technological advances allowed the
integration of these tools into clinical science testing and
treatment. In its broadest sense, Al refers to an active
system capable of performing a specific task. ML, often
referred to as a subset of Al, usually refers to algorithms
that can “perform” particular tasks without explicit use of
the solution (although Al and ML terms are often
interchangeable). For example, ML algorithms can
generate predictions for new and invisible data after
training in a limited learning set and are particularly
useful for tasks that involve large amounts of data or
dynamics (Figure 1). With so many variables that can
cause toxicity, ML methods are well suited to match the
relationship between adverse drug-induced side effects
and related covariates. An ML model that can predict the
outcome from an input set after tuning the best
collection of parameters in the number of training cases
is called a separator. Some of the common categories
are naive Bayes, logistic regression (LR), k-nearest
neighbours (kNN), random forests (RF), support vector
machine (SVM), and artificial neural networks (ANN).
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Overview of Contemporary Research:

Many studies have found that it uses ML-based
models to predict RT-related side effects. Most of them
affect the head and neck (13 studies), lungs (15
studies), and prostate cancer (16 studies). A small

3), esophagus (1 study), gynecology (3 studies), and
liver (1 study) cancer (Table 1). The presented books are
divided into different categories according to the
anatomical region. The focus was on introducing both

portion focuses on the brain (1 study), breast (studies),

Cancer type  References

Breast (1)

(11

(12)
Esophagus  (13)
Gyneco (14)
(15)
(1)
HaN (17)
(1)

(19)
(209
@1)
22)

(23

(24)
(=5

(2
2n

(28)
(29)

Lung (31)
@3
[34)
)

(33)

(&7

No. of pta

2277

27
1M

42

2121

153

427
173

134
a7

ar

240

1 [HEN)
1 (Prostate)
125

110

192
197

{lng-+brain
+HEN)
14

115

Type of RT

IMRT or 30-CAT
EERT+BRT
EBRT+BRT

RT (367) PT (404

30-CAT

583 3

INIRT or PT
IMBT and 30=CRT

RT
30-CAT

Type of predicted Features  Classifier Results’
toxicity Type
Dermatitis A RF Acc = 08T flest)
Moist desquamation. D.C LR, RF, gradient 0.56-0.85
dermatitis, chest pain, booeting
taligue
Telangectasia b.c LASS0
Prieumoni is oG LR Aoo =063
Ractal tondciy ) S 0.a2-0.91
Ractal toxiciy D CMM (transfer 128
leanning)
Flgtula fommation D.c S 1.30
Tewicity fgrade =3) c LR, AF, XGBoost  0B3-0.65
Unptanned o,C LR, graciiant uG4=-0,76
hospitalizations, boosting, RF
Feeding fube placement,
\Walght loss
Herostomia D.R.C & ML algotithrms Best SV and
autra-treas 0.74-0.89
Trismus ) IBDOM Identification of a
cheater of vousl relatad
wilh teaicity
Merostomia 0,GC LK, LASSO, AF Best LA (0.70)
Acube dysphagia oo SVM, RF 082
Marostomia (grade =2) D, C ] Moadel updating
iz baneficial
Esophagitis R, D LASS0 0.75
Sansoringural hearinglogs R, C Deszigaon siumg, TE.08% accurancy
Hoafiding 75.9% precision
Parotid shrinkge D,C Fuzzy logic Ao =0.79-0.86
Yarostomia Maive Bayas
Ferostomia, sticky saliva R.D bultivariate LR 077
Mucoeitis DG LK, S\WM, AF 0.71 (AF)
¥arostomia [HEN), o Decigion tree, SVM 0,429 MAE (HEN)
Rectal bleeding (prostate) B87% acc [prostate)
Hepatobiiany fouicity D,C CHM {transter 125
liaarming)
LG, OFS, OS5, and fibroste R G regression
Prieumoniis c FF 1.06
Radalion preumanilis R.DG LASs0 068
Chest wanll symdnome 0,G Diescision ires nia
RF
Classifiers comparison D, C Diecigion trea, AF, Best: alastic net LR
AMM, 5VM, elastic  and RF
e, logit-boost
Lung injuries R, D LR 0.64-0.78
Pnieumonitis D.C Deecision trees, RF,
RUSBoost
Esophagtis DG LASEO .78
Eneumoniis 0,G Bayesian nelwork  0U66-0.83
LR
Single variakile

methodological and clinical aspects.
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(39 T48 RT Escphagitis b.C LR 0.83
(4 218 AD-CRT Prisumcnitis D,C SV 1.16
(41) 35 (HEM) AD-CRT Herostomia, DG LR, SWM, ANM Bast: modified SWM
210+188 Praumaonitis {188)
{Lungl Esophagitis (216)
42y 18 AT Badiation preumanitis o, Decision tres o0.7e
MMM, SVM,
seif-ceganizing
maps
(45 234 AT Radiation preumanitiz DG Decision tree o2
[} 166 EBRT Esophagitis o LR
oG hamia
(45} 142 A-CRT Frieurmanilis [u] ANMN 0.61-0.85
Prostate [46) 64 IMRT (52 ptsh Urnary toxicity R.D, G LR DE5-0.77
AD-CAT (12 pis) Gaslro-intestinal losicity
(47 33 IMRT Chyatitks R LR 0.62-0.75
(48) 33 IMRT Rectsl wall changes A LR C46-0.81
=] 351 AT Flectal bleeding AR,D,C LR 0.58-0.73
Fecal inoontinemes
Urinary inconlingncs
Mocturia
(50 508 AT Late fecal incontinencs D, G ANM 078
51} 503 AT Rectal bleeding bc ICA 0.83, 0.80,0.78
=<} 324 BAT+-EBRT GL pondcity symptonms 0.C.G AF 0.7
53 118 EERT, BAT Gl tendcilies D LR Idantification of spatial
constraint for tomicity
reducticn
(54} 368 AT Ractal bleeding, c.G RF. LR 0.71 jrectal blssding)
Erectile dyslunclion 0.68 jerectie
dyshurction)
(55) fi ] IMRT Rectal toxicity (grade =2) D.C LR 1.28
(54} 54 EBRT Crysuria, hematuria, DG LR, Elastic-ned, Bast: LR, MARS
incontinence, frequency SV, RF, ANMN, ALC = 065
MARS
57} 0 EBRT Rectal bleeding 0 LD, SV, Best: CP-Dda,
ke-rmasans, kMM,
PCA, CP-DMA
55) 261 Ar-CRT Rectal toxicity, rectal D,C RF NTCF, NTCP 0.78, 0.66
bleeding
54 bal:] AT Factal bleeding LA, ANM 0.655, 0.704
(50 a2 AT Acute bladder and rectal D.GC ANMN, SV 0.7
Tondcity
(&1) 1189 AT Pectal bleeding D AWM Sansitivity and
MNoctunia spacificity =55%

30-CAT, 30 conformed AT, Ace, accuracy: ANN, arfificisl nevrad netwark; ALIC, area under the curve, BRT, brachytherapy, GV, corvolubional neural nawerk, CP-OWA, canonical
polvade decomposition-deterministic muliway analsis; OFS. disease fee-sundal EBAT, exemal beam AT, G, gastreintestina; G, genilourinany; HEN, head and neck; IBDM,
image-bazed dzts mimng: 1CA, ind\pendent componant analysis, WRT, nfensity-modulated BT, kNN k-neansst neighbans; LASS0, Least Absolute Salaclion and Shrinkage Operahor;
novrmal ssue complicalion probability; n/a, not appiicatie; OF, overall sunival; PCA, principal companent analysis; pf, patient; PT, proton [herapy; BF, random forest; BT, radiotheragy:
ALSBoost, random wnder-samping Boost: SEAT, sfaneotactic body AT, SV, suppont wectar maching, Festunes wane classifisd Bs cinical (C), dogimatnz (D), genomic (G, or rediomic

R, “If nof specifed, ALIC values ang repored,

Brain:

One study of ML-based toxicity modeling was
related to brain cancer [4]. In the study, the authors
compared the performance of different ML dividers on
multiple data sets, including patients with brain, lung,
and H&N primaries. Their models included trunks, RF,
neural network, SVM, elastic net LR, and Logit-Boost
categories and were tested on 12 different data sets for
3496 patients. Both dosimetric and blood markers from

—
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meningioma and (non-lung cancer) - small cells
(NSCLC) and patients with H&N cancer were
considered. No single category is valid for all data sets,
but RF and net LR work equally well (best for six and four
data sets, respectively). Based on these findings, the
authors re-examined the pre-segment selection criteria,
concluding that strong segment selection is beneficial,
resultinginan AUC average of 0.02.
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Gynecological Cancers:

Three studies in this section analyze the prediction
of toxic effects following brachytherapy alone or
combined with external RT (EBRT) in gynecological
cancer. All models are trained with limited data sets,
ranging from 35 and 42 patients, and SVM or
convolutional neural network (CNN) class dividers.

Tian et al. [5] developed a fistula modeling model
with an SVM filter. Thirty-one factors were used as
predictive variables from a small sample of 35 patients
treated with interstitial brachytherapy. Their model has
reached a maximum accuracy of 0.901, but the authors
aptly point out the strong limit of using a small data set.

Head and Neck:

The size of the training data sets for published
works related to H&N cancer from 37 to 2121 patients.
Predicted toxic effects included late xerostomia, acute
mucositis, parotid shrinkage, unexpected
hospitalization, and weight loss. The classifications
used include LR, RF, gradient boosting, and one based
on an abstract concept. In addition, one [4] study
compared the performance of different class dividers in
other data sets (please refer to the Brain section for
more details).

The two most recent articles [1], [3] both used three
different categories (RF, gradient boosting, and LR
models) to predict random sleep, feed tube placement,
and significant weight loss (Reddy) and grade thi3
toxicity. Reddy et al. considered an extensive data set of
2,121 patients, comparing more than 700 treatment-
related clinical variables, and achieved AUC values of
0.640, 0.755, and 0.751 in RF, gradient boosting, and
LR, respectively. They succeeded in predicting grade =3
toxicity in 437 patients after 90 and 180 days (c-0.65 and
0.63 counts, respectively) using 47 patient covariates.
The critical volume planning target (PTV), body mass
index (BMI), essential volume in regions outside of PTV,
and age had significant statistical implications.

Lungs:

The data set size was between 54 and 235 patients
for lung cancer. Most studies focused on radiation-

induced respiratory disease, and other studies focused
on esophagitis, xerostomia, sticky saliva, and chest
pain. RT lung cancer may cause chest pain due to
fractures of the ribs, neuropathy-induced neuropathy of
the intercostal nerves or nerve branches, chest wall
edema, or chest wall fibrosis. However, the only study
we found was that the chest pain was directly
investigated [4]. The authors used a decision-making
tree and RF methods to identify the strong predictors of
chestwall pain in a group of 197 patients. Both static and
multiple analyses confirmed the role of rib capacity at
one cc, chest wall volume up to 30 cc, and rib dose max
(Dmax) as the appropriate variable. Based on these
findings, efforts should be made to reduce rib capacity to
1 cc <4000 cGy, chest wall capacity to 30 cc <900 cGy,
and rib Dmax <5100 cGy to reduce chest wall disease.

Radiotherapy:

With the continued growth of patient-centered
radiotherapy data from multimodality molecular and
biotechnology sources, Response-adapted
radiotherapy (KBR-ART) emerges as an important area
for personal radiation oncology treatment. In KBR-ART,
the planned dose distribution can be adjusted based on
the criteria used in patients' clinics and geometric and
biological parameters. In this paper, we present current
developments in adaptive radiotherapy (ART),
advances in KBR-ART, and explore a few static and
flexible machine learning methods applications to detect
the strength of the KBR-ART framework enhancing
tumor control and reduction. Adverse effects in respect
of patients treated with individual radiotherapy.
Specifically, three questions required for the
implementation of KBR-ART are considered: (1) what
information is required; (2) how to accurately measure
RT results; and (3) how to adapt best. The different
machine learning algorithms for the KBR-ART
application will be discussed and compared. Examples
representing different stages of KBR-ART are also
visited.
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Fig. 1. Comparison of the workflow of (A)
non-adaptive RT, (B) current image-based ART,
and (C) the proposed KBR-ART approach. The
current ART (B) mainly relies on image guidance
such as computed tomography (CT), positron
emission tomography (PET), and magnetic
resonance imaging (MRI). In KBR-ART, the
planning patients’ stage can utilize general
knowledge about patient status (imaging +
biological markers) as information for adapting

A significant natural advantage of the KBR-ART
framework is that treatment planning will be designed to
adapt flexibly to ongoing changes during treatment to
improve radiotherapy goals to eradicate the tumor while
minimizing injury to the normal excluded tissue based
on individual patient characteristics. As shown in Figure
1, the treatment plan can be legally implemented
according to the decision-making process n. This is
illustrated in Figure 1A of the previous/current
framework, where  is static. Still, in the case of KBR-
ART, Figure 1B, nis a time-dependent function based on
the information (information updates) available. During
treatment. The following scenario can be used as an
example of how KBR-ART can be used in practice: a
given planned radiation course is considered

how to estimate?
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treatment instead of using imaging only. Two
significant differences between
previous/current RT and KBR-ART are that (1)
knowledge is no longer restricted to imaging
only and can include biological markers such as
tumor genetics or blood-based inflammatory
proteins (cytokines) to inform predictive
modeling and decision-making, and (2)
application process of machine learning for
adapting atreatment plan nin KBR-ART.

appropriate according to the first human-based model
as a dose-based controlling (TCP) and standardized
control. The potential for tissue problem (NTCP) and the
goal is to develop a mild tumor control [p +=TCP - (1 -
NTCP)], for example. Then, during partial radiotherapy
treatment, the patient did not achieve the predicted
amount of TCP as expected, or worse, suffered from
unexpected toxicity due to treatment, i.e., NTCP
exceeded the intended risk limit. This is where KBR-ART
comes into play;to learn from the current observation.

Q: What Knowledge to be Used for KBR-ART
Planning?

There are four significant types of RT data that are
potentially useful as part of the knowledge synthesis for



Niraj Kumar Rai et al. / Explore, Vol. XIV, No. 2, 2022, pp. 112-120

KBR-ART:

e Clinical data,

e dosimetric data,

e radionics data,

e andbiological data.

e Clinical Data

Clinical data refers to cancer diagnostic factors
(e.g., distance, stage, history, site, etc.), survival metrics
(e.g., blood cell counts, heart rate/heart rate, lung
measurements, etc.), and patient-related information (
e.g., related diseases, gender, age, etc.). Because of
their nature, clinical data can often be obtained in an
informal format that can be challenging to extract
information directly. Therefore, machine learning
methods for processing natural language can help
convert such data into a structured layout (e.g., included
in atable) before further processing.

Dosimetric Data

Dosimetric data contains information on the
treatment plan for RT, which includes radiation dose
calculations using computed tomography (CT) imaging.
In particular, dose-volume metrics obtained without
histograms (DVHs) were extensively investigated to
model the outcome (12-16). Valuable metrics are usually
a volume that receives a large volume or equal to a
specific volume (Vx), a small volume to a very high
degree of x% of the volume (Dx), average, limit,
minimum volume, etc. Significantly, dedicated MATLAB
™-based software called "DREES" can automatically
detect metrics and apply them to RT response
prediction models.

Radiomics Data

Radiomics is a field of medical thinking research
that aims to extract the essential aspects of value from
medical imaging and to link this knowledge to clinical
and biological conclusions. The most common form of
imaging is CT, considered a standard treatment plan for
RT. Other imaging techniques used to improve
treatment monitoring and prognosis for various types of
cancer are also used, such as positron emission
tomography (PET) and magnetic imaging resonance
(MRI). These methods can be used individually or in
combination.

Biological Data

According biomarker is defined as "a factor that is
properly measured and evaluated as an indicator of
common biological processes, pathological processes,
or pharmacological responses to medical
interventions." Biomarker measurements are usually
based ontissue or liquid specimens, which are analyzed
using biological laboratory techniques and have the
following two categories according to their physical and
chemical sources:

Conclusion:

This study presented a comprehensive design
framework for KBR-ART and application based on
machine learning and examined some of its key
features. First, in Section 2, we analyzed the
characteristics and types of elements in clinical data,
such as the effective selection of data entry for KBR-
ART. Second, in Phase 3, we visited a few promising and
powerful modern development techniques, such as
DNNs, CNNs, RNNs, and older line-type retrospective
models. The framework of the KBR-ART we have
developed here is based on machine learning
strategies, accurate predictions, and sequential
learning, which are the basis for building the KBR-ART
system. There are three questions about the design and
implementation of KBR-ART, which we have discussed
in this paper and presented illustrative examples of each
highlighted RL / BN application in the NSCLC radiation
therapy database. Section 4 provided the integration
structure in Section 4.1 of the KBR-ART system design
(Figure 18). The aim was two fold: (1) to clearly
understand the context of past ART built into the last
generation and (2) to provide a guiding principle for
designing the next-generation algorithms.

Despite loose conclusions about the clinical use of
RT-induced toxicity models, our findings suggest that
ML-based solutions for RT toxicity prediction may
represent a valuable tool in research settings. An
effective toxicity predictive system is essential to
increase the RT treatment index and guide the clinical
selection of patients. Such models can be a vital assetin
many different areas for patients and nurses.
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