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Abstract: Sorting can be viewed as one of the
fundamental aspects of computer applications. The
efficiency of a sorting algorithm is a major issue when
the amount of data to be sorted is large. Different sorting
algorithms are analyzed based on time complexity and
space complexity to select the efficient one based on
their execution time for varying input sizes. In the case of
sorting algorithms, when the array elements to be sorted
are randomly generated from some probability
distribution; then the true ability of an algorithm can be
judged only when it is supported by the study of
parametric complexity analysis which includes the study
of the behaviour of running times as a function of
parameters of the input distribution. To select a
particular sorting algorithm from among a set of several
algorithms, the behaviour of the parameters of the input
distribution plays an important role and it can’t be
ignored as far as the efficiency of the algorithm is
concerned. In this paper, discrete uniform distribution is
chosen forthe study.

Three sorting algorithms, having similar average-case
complexity O (N log N), quick sort, heap sort and merge
sort have been chosen here for statistical comparative
study of their parametric complexity. The purpose of the
study is to investigate the effect of the parameter of the
discrete uniform distribution on the sorting time of the
three sorting algorithms under study. While working with
several algorithms, one way to judge the best algorithm
is to find the execution time T(n), as a function of N(input
size) and examine the run time complexity using big O
notation. However, sometimes it is difficult to find the
exact form of the function and it becomes difficult to
predict the complexity/ efficiency of an algorithm.
Further, it has been tried to find the best sorting
algorithm by performing a variance-based analysis of
the sorting algorithms.
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Introduction:

Sorting can be viewed as one of the fundamental
aspects of computer applications. The efficiency of a
sorting algorithm is a major issue when the amount of
data to be sorted is large. Different sorting algorithms
are analyzed based on time complexity and space
complexity to select the efficient one based on their
execution time for varying input sizes. The main purpose
behind analyzing algorithms is to determine their
characteristics to assess their suitability for diverse
applications or to judge against the other algorithms for
the same application. In the case of sorting algorithms,
when the array elements to be sorted are randomly
generated from some probability distribution; then the
true ability of an algorithm can be judged only when it is
supported by the study of parametric complexity
analysis which consists of the study of the behaviour of
running times as a function of parameters of the input
distribution. To select a particular sorting algorithm from
among a set of several algorithms, the behaviour of the
parameters of the input distribution plays an important
role and it can't be ignored as far as the efficiency of the
algorithm is concerned. The works done on
parameterized complexity have been explored a lot in
the recent past.

Mahmoud (2000) may be consulted for literature
review with special reference to sorting algorithms. The
works of Anchala and Chakraborty (2007), Anchala and
Chakraborty (2008), and Prashant, Anchala and
Chakraborty (2009) on parameterized complexity of
sorting algorithms greatly contribute to the literature
review. The theoretical concept of general
parameterized complexity can be better understood by
referring Flum and Grohe (2006).

A theoretical probability distribution provides a rule
according to which various values of the random
variable are distributed with specified probabilities
based on some fixed rule that can be stated
mathematically.

A discrete probability distribution exhibits the
probabilities of outcomes with fixed values. The
probability distribution of a random variable that takes

distinct values is known as a discrete probability
distribution.

In this paper, discrete uniform distributionis chosen
for the study. Three sorting algorithms, having similar
average-case complexity O(N log N), merge sort, heap
sortand quick sort, have been chosen here for statistical
comparative study of their parametric complexity. The
purpose of the study is to examine the effect of the
parameter of the discrete uniform distribution on the
sorting times of the three sorting algorithms understudy;,
for average case and worst case situations as well.

In the quick sort algorithm, the median of the first,
middle and last element of the array is taken as the pivot
element.

A laptop computer with a configuration (Intel (R)
Core ™ i3-4005U Processor @ 1.70GHz, 8GB RAM,
Windows 7 operating system) is used to do a series of
computer experiments. The execution times of the
sorting algorithms are computed by running codes
written in Dev C++ using C language and different
relative graphs are drawn using Minitab 17 Statistical
Package.

Discrete Uniform Distribution

Definition: “If a random variable X follows discrete
uniform distribution over the range [1,6] if its probability
mass function is expressed as follows”:

1
—;x=1,2,3.4,..0

P(X =x)=<0
[0,0l‘herwise J

Here, 0 is called the parameter of the distribution
and liesinthe set of all positive integers.
The discrete uniform distribution is a symmetric
distribution in which there is an equal chance of
occurrence of a finite number of values. Each one of the
6 values has an equal probability of occurrence 1/6.
Random number generation
For the generation of random numbers from the
discrete uniform distribution
uD (1, 6):
Step 1: A random number u~U(0,1) is generated and
[1 + 6*u] is returned as a uniform variate.
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Relative performance of various sorting algorithms
for discrete uniform input:

Heap sortin average and worst cases

Table 1. Shows the average case runtime of heap
sort for varying parameter ()

N 6=100 0 =500 0 =1000
10000 0.009400 0.009200 0.009200
20000 0.022000 0.012600 0.009200
30000 0.022200 0.019200 0.024600
40000 0.025000 0.024800 0.037400
50000 0.034400 0.037400 0.050200
60000 0.043600 0.040600 0.056600
70000 0.056200 0.056400 0.053200
80000 0.075000 0.066000 0.065800
90000 0.081200 0.081400 0.081000
100000 0.071600 0.094000 0.093800

Relative performance of heap sort for vanying theta
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Table 2. Shows the worst-case runtime of heap
sort for varying parameter (06)

N 6=100 0 =500 0 =1000
10000 0.012600 0.006400 0.009400
20000 0.015400 0.009200 0.009600
30000 0.018600 0.021600 0.022200
40000 0.022200 0.028200 0.034600
50000 0.024800 0.028200 0.046800
60000 0.031200 0.034600 0.040200
70000 0.050000 0.052800 0.047000
80000 0.056200 0.059000 0.050000
90000 0.062600 0.062400 0.053200
100000 0.072000 0.062400 0.071600

Relative perfarmance of heap sort for varying theta
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The execution time of heap sort for different values
of 6 (parameter of the distribution) when applied to an
array of random elements generated from U(6)
distribution in both average and worst-case has been
and 2
corresponding plots (execution time vs array size) for

recorded in Tables 1 respectively and
average and worst cases are shown in Fig. 1 and 2
respectively. If average-case complexity is compared
with its worst-case counterpart, it reveals a very
irregular pattern for small values of 6 in the average case
whereas a similar irregular complexity pattern is
observed for high values of 6 in the worst case. However,
for arrays of moderate size (N between 20000 to 70000),
smaller values of the parameter in both average and
worst cases are preferable.

In case of failure to find some systematic
complexity pattern of heap sort in case of uniform
distribution, complexity pattern was further investigated
with very high values of 8(>1000) and it was found that
there is almost no change in the performance of heap
sort with change in the parameter of the input
distribution i.e. 6 for both average and worst-case
situations. The fact that the parameter of the discrete
uniform distribution does not affect the heap sort
complexity is further supported by the parametric
complexity in section 4. The size of the array (N) to be
sorted is the only factor affecting the execution time of
the sorting algorithm in average and worst cases.
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Quick sortin Average and Worst cases

Table 3. Average case runtime of quick sort for
varying parameter (0)

N 6 =100 6 =500 6=1000
10000 0.003200 0.000000 0.003000
20000 0.009200 0.003200 0.009600
30000 0.018600 0.009200 0.006200
40000 0.028000 0.015800 0.012400
50000 0.037400 0.015800 0.015600
60000 0.056600 0.022000 0.015800
70000 0.065600 0.022000 0.021600
80000 0.093800 0.031200 0.028000
90000 0.112400 0.043600 0.028200
100000 0.137600 0.043800 0.031200

Relative performance of quick sort for varying theta
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Relative performance of guick sort far varying theta
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The results of the computer experiments done in
the case of quick sort, for uniform input in average and
worst cases are depicted in tables 3 and 4 respectively.
Figures 3 and 4 are the scatter plots based on these
tabular data.

By inspection, we see that in average case the
performance of quick sort is quite similar to that of worst-
case performance. But for an array of any size and the
same value of 0, the execution time in the worst case is
much higher than that in the average case. However,
high values of 6(>=500) is preferable, both in the
average and worst cases.

Merge sortin average and worst cases

Table 4. Shows the worst-case runtime of Table 5. Shows the average case runtime of
quicksort for varying parameter (6) merge sort for varying parameter (0)

N 6 =100 6 =500 6=1000 N 6 =100 6 =500 6=1000
10000 0.021800 0.018600 0.018800 10000 0.006200 0.009200 0.009000
20000 0.053400 0.040800 0.043400 20000 0.012600 0.015600 0.016000
30000 0.109400 0.084600 0.075200 30000 0.018600 0.019000 0.019000
40000 0.231600 0.121600 0.137600 40000 0.024600 0.028400 0.025000
50000 0.319000 0.177800 0.209400 50000 0.031400 0.031400 0.031400
60000 0.390200 0.318600 0.240800 60000 0.034600 0.037400 0.037400
70000 0.578000 0.390800 0.231600 70000 0.050200 0.040600 0.046600
80000 0.818800 0.537400 0.456200 80000 0.053000 0.050000 0.050000
90000 0.640600 0.500000 0.537600 90000 0.049800 0.059400 0.056200
100000 1.121600 0.756200 0.831200 100000 0.059400 0.062400 0.062800

=y
N



A Comparative Analysis of Sorting Algorithms under Discrete Uniform Distribution

Relative parformance of merge sort for varying theta
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randomly, though keeping at a fixed value, some arrays
(especially when the array size is large) may have a
large number of tied elements which may cause
irregularity in the complexity pattern.

Empirical complexity of various sorting algorithms

- 4 under discrete uniform input
wa "
A o Table 7. Shows the average case runtime of
: sorting algorithms for 6 = 1000
e M0G0 MO0 @0W B0 XSO0 N Quicksort Heapsort Merge sort
M(5ize of the armay)
10000 0.003000 0.009200 0.009000
Fig. 5 20000 0.009600 0.009200 0.016000
30000 0.006200 0.024600 0.019000
Table 6. Shows the worst-case runtime of merge 40000 0.012400 0.037400 0.025000
sort for varying parameter (6) 50000 0.015600 0.050200 | 0.031400
N 6 =100 6 =500 0 =1000 60000 0.015800 0.056600 0.037400
10000 0.003200 0.003200 0.006400 70000 0.021600 0.053200 0.046600
20000 0.012200 0.009600 0.009000 80000 0.028000 0.065800 0.050000
30000 0.015800 0.021600 0.015600 90000 0.028200 0.081000 0.056200
40000 0.022200 0.018400 0.015400 100000 0.031200 0.093800 0.062800
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In both average and worst cases when the data is

simulated from uniform distribution and sorted using

merge sort, a non-symmetric complexity pattern is
observed. This may be because while generating data
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Table 8 : Shows the worst case runtime of
sorting algorithms for 6 = 1000
N Quicksort Heapsort Merge sort
10000 0.018800 0.009400 0.006400
20000 0.043400 0.009600 0.009000
30000 0.075200 0.022200 0.015600
40000 0.137600 0.034600 0.015400
50000 0.209400 0.046800 0.025000
60000 0.240800 0.040200 0.034600
70000 0.231600 0.047000 0.034600
80000 0.456200 0.050000 0.031400
90000 0.537600 0.053200 0.047000
100000 0.831200 0.071600 0.046600

Relative performance of quick sort, heap sort and menge sort v N
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As far as the relative performance of three
algorithms for the uniform input is concerned, the
average-case performance of quicksort is best whereas
heap sort gave the worst performance. On the other
hand, in the worst case, quick sort did not perform well
but the other two algorithms performed almost similarly,
having the same complexity level for an array of the
same size. Regression analysis was performed on the
data given in tables 7 and 8 to find the empirical
complexity of various algorithms as a function of N(array
size) which is displayed in Table 9 below.

Table 9. Empirical complexity of sorting
algorithms for discrete uniform input

Name Average Worst
QuicksortO (Nlog,N) O(N?)
Heapsort O(Nlog,N) O(N)
Merge sort O(Nlog,N) O(Nlog,N)

FromTable 9, itis observed that for discrete uniform
input, only heap sort worst case empirical complexity is
different from the theoretical one i.e. O(Nlog,N). All the
other sorting algorithms have shown similar empirical
complexities as their theoretical complexities.

Parametric complexity:

The discussion on the performance analysis of
heap sort, quick sort and merge sort under uniform input
is further extended by parametric complexity analysis
using a factorial experiment. The factorial experiment
presents a clear picture of the significance or
insignificance of the parameters of the input distribution
on the response time of sorting algorithms.

Factor Information

Factor Levels Values
0 3 100, 500, 1000
N 3 10000, 50000, 100000
Table 10 (a). Discrete uniform distribution (average case)
Heap Sort Merge sort Quick sort
Sources | D.f. F p-value | F p-value | F p-value
N 2 | 6430 | 0000 |25519 | 0000 | 6127 | 0.000
0 2 176 | 0189 | 049 | 0617 |279.45 | 0.000
NO 4 080 | 0333 | 043 | 0972 |150.76 | 0.000
Table 10 (b): Discrete uniform distribution (worst case)
Heap Sort Merge sort Quicksort
Sources | D.f. F p-value | F p-value | F p-value
N 2 | 7407 | 0000 | 12801 | 0.000 | 41.27 | 0.000
0 2 2.23 0.124 0.63 0.541 1.56 0.225
NO 4 138 | 0262 | 066 | 0623 | 0.60 | 0.662

The results of the factorial experiments have been
summarized in Table 10(a) and 10(b) for average and
worst-case respectively. As seen in Tables 10(a) and
10(b), the factor N (size of the array) is found to be
significant for both the average and worst cases of all the
three sorting algorithms. The parameter (0) is found to
be significant for the quick sort algorithm only in the
average case. The parameter 6 does not affect merge
sort complexity as well as heap sort complexity both in
average and worst situations. It implies that while sorting
array elements using merge sort and heap sort, data
can be simulated from a uniform distribution with any
value of 6.
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Since 6 is found to be significant in the case of
quicksort for the average case, it is tried to obtain the
optimal value for 6. The execution times obtained are
given below for varying 6 from 100 to 1000. At the same
time, it is also observed that the interaction NO has a
significant effect on the execution time of quicksort.
Thus, the data for the optimal value of 6 wereobtained for
various values of array size i.e. N=10000, N=50000 and
N=100000 in the tables to follow:

Table 11(a). Optimal value of 6 for average-case
quick sort for N=10000

0 Quicksort
100 0.000
200 0.0062
300 0.003
400 0.0008
500 0.003
600 0.000
700 0.0032
800 0.0032
900 0.0092
1000 0.008

Table 11(b). Optimal value of 6 for average-case
quick sort for N=50000

0 Quicksort
100 0.0512
200 0.0254
300 0.0152
400 0.0158
500 0.0192
600 0.0222
700 0.0156
800 0.0122
900 0.0202
1000 0.0126

From table 11(a), it is found that for array size,
N=10000, the execution time of quicksort is zero
(minimum) at the points 6 = 100 and 6 = 600. On the
other hand from table 11(b) for array size N = 50000, it is
seen that the minimum execution time is observed at the
point 6 =800.

Table 11(c). Optimal value of 0 for average-case
quick sort for N=100000
0 Quicksort
100 0.2182
200 0.1106
300 0.0846
400 0.0812
500 0.0438
600 0.0494
700 0.0374
800 0.0374
900 0.0408
1000 0.0540

Table 11(c) confirms that for array size, N=100000,
the execution time of quicksort is minimum at the points
06=700 and 6=800. It can be depicted from the above
investigations that for an array of large size, a high value
of the parameter is preferable. While in the worst case
any value of the parameter is preferable.

Comparision of sorting algorithms using the
variance of execution times:

A lot of research has been done for judging the
efficiency of sorting algorithms by analyzing the
execution times for changing the array size. In this paper,
the efficiency of a sorting algorithm is found, when the
data is generated from some probability distribution. It is
of paramount importance to examine the robustness of
the algorithms in different situations. Variability in
execution times for a given problem size is usually
ignored. Efficiency is based on variance. An algorithm
having a low variance of execution times will be
considered more efficient than the others.

In this section, the efficiency of the three sorting
algorithms understudy was compared using the
variance of their execution times over the range of array
size (N) from 10000 to 100000. The array is generated
from uniform distribution keeping the value of the
parameter 6=1000. In this procedure for the same input,
the data is generated for an array of size N and the
average execution time was found for 20 runs. This
procedure is repeated for different values of N (10000 to
100000). Next, the variance for the data so generated

—
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over the values of N was found and this procedure was
repeated for all the three algorithms. The algorithm for
sorting data simulated from a probability distribution is
selected as the best one which has minimum variance.

Table 12. Shows the average case runtime of
different algorithms for varying N

N Quicksort Heapsort Merge sort
10000 0.001550 0.006950 0.004700
20000 0.001550 0.007000 0.010900
30000 0.007850 0.015650 0.015700
40000 0.008500 0.017950 0.021300
50000 0.012650 0.025000 0.029000
60000 0.014100 0.028300 0.034300
70000 0.016650 0.031950 0.039900
80000 0.021050 0.040650 0.044550
90000 0.025050 0.049050 0.050050
100000 0.030450 0.053100 0.056300

Variance 0.000092 0.000266 0.0003

Table 13. Shows the worst-case runtime of
different algorithms for varying N

N Quicksort Heapsort Merge sort
10000 0.014050 0.001600 0.006250
20000 0.038250 0.008600 0.007850
30000 0.067950 0.011700 0.012450
40000 0.118100 0.014850 0.015400
50000 0.173250 0.022650 0.018600
60000 0.250800 0.022650 0.030550
70000 0.327050 0.032100 0.032000
80000 0.451600 0.029650 0.033600
90000 0.449300 0.039250 0.038250
100000 0.592200 0.036700 0.041450

Variance 0.040035 0.000159 0.000169

As indicated by the results in Table 12, quicksort
has the least variability in the execution times for sorting
arrays of different sizes. Consequently for the average
case, quick is the best sorting algorithm among the
three. On the other hand, for the worst-case situation,
the results shown in Table 13 exhibit that heap sort has
the least variance. As a result, it can be said that in the
worst-case situation, heap sort is the most efficient
algorithm for sorting the array.

Conclusion:

The factor N (size of the array) is found to be significant
for both the average and worst cases of all the three
sorting algorithms. On the other hand, the other factor
theta (0) is found to be significant for the quick sort
algorithm only both in the average and worst case. In
both average and worst cases the performance of heap
sortand merge sort are not affected by the parameter 6.

It is observed that for discrete uniform input, only heap
sort worst case empirical complexity is different from the
theoretical one i.e. O(Nlog,N). All the other sorting
algorithms have shown similar empirical complexities as
their theoretical complexities.

As far as the variance-based analysis is concerned,
quicksort was the efficient algorithm in the average-case
analysis, whereas heap sort was found to be the best
algorithm for the worst-case situation.

The above work can be further improvised by using
different statistical techniques for deciding the best
sorting algorithm. This approach can be applied to
arrays generated from newly developed statistical
distributions that represent the real-time data more
efficiently.

This research method on sorting algorithms can be
further coded in some different programming languages
that are implemented using compilers. Also, the
variability in the execution times can be examined when
the array data is constant or non-random.
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